当前位置:首页 > 外文
SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELING
SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELING

SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELINGPDF电子书下载

外文

  • 电子书积分:22 积分如何计算积分?
  • 作 者:
  • 出 版 社:
  • 出版年份:2222
  • ISBN:7505386387
  • 页数:817 页
图书介绍:本书是美国斯坦福大学电气工程系“硅超大规模集成电路制造工艺”课程所使用的教材,该课程是为电子工程系微电子学专业的四年级本科生及一年级研究生开的一门专业课。本书最大的特点是,不仅详细介绍了与硅超大规模集成电路芯片生产制造相关的实际工艺技术,而且还着重讲解了这些工艺技术背后的科学原理。特别是对于每一步单项工艺技术,书中通过工艺模型的引入和工艺模拟软件的使用,非常形象直观地给出了实际工艺过程的物理图像。同时还对每一步单项工艺技术所要用到的测量方法做了详细的介绍,对于工艺技术与工艺模型的未来发展趋势,也做了必要的分析讨论。另外本书每一章后面都附有相关内容的参考文献,同时还附有大量的习题。
《SILICON VLSI TECHNOLOGY FUNDAMENTALS PRACTICE AND MODELING》目录
标签:

Chapter 1 Introduction and Historical Perspective 1

1.1 Introduction 1

1.2 Integrated Circuits and the Planar Process—Key Inventions That Made It All Possible 7

1.3 Semiconductors 13

1.4 Semiconductor Devices 33

1.4.1 PN Diodes 33

1.4.2 MOS Transistors 36

1.4.3 Bipolar Junction Transistors 39

1.5 Semiconductor Technology Families 41

1.6 Modern Scientific Discovery—Experiments, Theory, and Computer Simulation 43

1.7 The Plan For This Book 45

1.8 Summary of Key Ideas 46

1.9 References 46

1.10 Problems 47

Chapter 2 Modern CMOS Technology 49

2.1 Introduction 49

2.2 CMOS Process How 50

2.2.1 The Beginning—Choosing a Substrate 51

2.2.2 Active Region Formation 52

2.2.3 Process Option for Device Isolation—Shallow Trench Isolation 57

2.2.4 N and P Well Formation 60

2.2.5 Process Options for Active Region and Well Formation 63

2.2.6 Gate Formation 71

2.2.7 Tip or Extension (LDD) Formation 76

2.2.8 Source/Drain Formation 80

2.2.9 Contact and Local Interconnect Formation 82

2.2.10 Multilevel Metal Formation 84

2.3 Summary of Key Ideas 90

2.4 Probems 91

Chapter 3 Crystal Growth, Wafer Fabrication and Basic Properties of Silicon Wafers 93

3.1 Introduction 93

3.2 Historical Development and Basic Concepts 93

3.2.1 Crystal Structure 94

3.2.2 Defects in Crystals 97

3.2.3 Raw Materials and Purification 101

3.2.4 Czochralski and Float-Zone Crystal Growth Methods 102

3.2.5 Wafer Preparation and Specification 105

3.3 Manufacturing Methods and Equipment 109

3.4 Measurement Methods 111

3.4.1 Electrical Measurements 111

3.4.1.1 Hot Point Probe 112

3.4.1.2 Sheet Resistance 113

3.4.1.3 Hall Effect Measurements 115

3.4.2 Physical Measurements 117

3.4.2.1 Defect Etches 117

3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 118

3.4.2.3 Electron Microscopy 119

3.5 Models and Simulation 121

3.5.1 Czochralski Crystal Growth 122

3.5.2 Dopant Incorporation during CZ Crystal Growth 125

3.5.3 Zone Refining and FZ Growth 128

3.5.4 Point Defects 131

3.5.5 Oxygen in Silicon 138

3.5.6 Carbon in Silicon 142

3.5.7 Simulation 143

3.6 Limits and Future Trends in Technologies and Models 144

3.7 Summary of Key Ideas 146

3.8 References 147

3.9 Problems 148

Chapter 4 Semiconductor Manufacturing—Clean Rooms, Wafer Cleaning,and Gettering 151

4.1 Introduction 151

4.2 Historical Development and Basic Concepts 154

4.2.1 Level 1 Contamination Reduction: Clean Factories 157

4.2.2 Level 2 Contamination Reduction: Wafer Cleaning 159

4.2.3 Level 3 Contamination Reduction: Gettering 161

4.3 Manufacturing Methods and Equipment 165

4.3.1 Level 1 Contamination Reduction: Clean Factories 165

4.3.2 Level 2 Contamination Reduction: Wafer Cleaning 166

4.3.3 Level 3 Contamination Reduction: Gettering 167

4.4 Measurement Methods 169

4.4.1 Level 1 Contamination Reduction: Clean Factories 169

4.4.2 Level 2 Contamination Reduction: Wafer Cleaning 173

4.4.3 Level 3 Contamination Reduction: Gettering 176

4.5 Models and Simulation 180

4.5.1 Level 1 Contamination Reduction: Clean Factories 181

4.5.2 Level 2 Contamination Reduction: Wafer Cleaning 184

4.5.3 Level 3 Contamination Reduction: Gettering 186

4.5.3.1 Step 1: Making the Metal Atoms Mobile 186

4.5.3.2 Step 2: Metal Diffusion to the Gettering Site 187

4.5.3.3 Step 3: Trapping the Metal Atoms at the Gettering Site 190

4.6 Limits and Future Trends in Technologies and Models 193

4.7 Summary of Key Ideas 196

4.7 References 196

4.9 Problems 198

Chapter 5 Lithography 201

5.1 Introduction 201

5.2 Historical Development and Basic Concepts 203

5.2.1 Light Sources 206

5.2.2 Wafer Exposure Systems 208

5.2.2.1 Optics Basics—Ray Tracing and Diffraction 209

5.2.2.2 Projection Systems (Fraunhofer Diffraction) 212

5.2.2.3 Contact and Proximity Systems (Fresnel Diffraction) 219

5.2.3 Photoresists 221

5.2.3.1 g-line and i-line Resists 223

5.2.3.2 Deep Ultraviolet (DUV) Resists 225

5.2.3.3 Basic Properties and Characterization of Resists 227

5.2.4 Mask Engineering—Optical Proximity Correction and Phase Shifting 230

5.3 Manufacturing Methods and Equipment 234

5.3.1 Wafer Exposure Systems 234

5.3.2 Photoresists 238

5.4 Measurement Methods 241

5.4.1 Measurement of Mask Features and Defects 242

5.4.2 Measurement of Resist Patterns 244

5.4.3 Measurement of Etched Features 244

5.5 Models and Simulation 246

5.5.1 Wafer Exposure Systems 247

5.5.2 Optical Intensity Pattern in the Photoresist 253

5.5.3 Photoresist Exposure 259

5.5.3.1 g-line and i-line DNQ Resists 259

5.5.3.2 DUV Resists 263

5.5.4 Postexposure Bake (PEB) 264

5.5.4.1 g-line and i-line DNQ Resists 264

5.5.4.2 DUV Resists 266

5.5.5 Photoresist Developing 267

5.5.6 Photoresist Postbake 270

5.5.7 Advanced Mask Engineering 271

5.6 Limits and Future Trends in Technologies and Models 272

5.6.1 Electron Beam Lithography 273

5.6.2 X-ray Lithography 275

5.6.3 Advanced Mask Engineering 277

5.6.4 New Resists 278

5.7 Summary of Key Ideas 281

5.8 References 281

5.9 Problems 283

Chapter 6 Thermal Oxidation and the Si/SiO2 Interface 287

6.1 Introduction 287

6.2 Historical Development and Basic Concepts 290

6.3 Manufacturing Methods and Equipment 296

6.4 Measurement Methods 298

6.4.1 Physical Measurements 299

6.4.2 Optical Measurements 299

6.4.3 Electrical Measurements—The MOS Capacitor 301

6.5 Models and Simulation 312

6.5.1 First-Order Planar Growth Kinetic —The Linear Parabolic Model 313

6.5.2 Other Models for Planar Oxidation Kinetics 322

6.5.3 Thin Oxide SiO2 Growth Kinetics 326

6.5.4 Dependence of Growth Kinetics on Pressure 328

6.5.5 Dependence of Growth Kinetics on Crystal Orientation 329

6.5.6 Mixed Ambient Growth Kinetics 332

6.5.72D SiO2 Growth Kinetics 333

6.5.8 Advanced Point Defect Based Models for Oxidation 339

6.5.9 Substrate Doping Effects 343

6.5.10 Polysilicon Oxidation 345

6.5.11 Si3N4 Growth and Oxidation Kinetics 347

6.5.12 Silicide Oxidation 350

6.5.13 Si/SiO2 Interface Charges 352

6.5.14 Complete Oxidation Module Simulation 357

6.6 Limits and Future Trends in Technologies and Models 359

6.7 Summary of Key Ideas 361

6.8 References 361

6.9 Problems 364

Chapter 7 Dopant Diffusion 371

7.1 Introduction 371

7.2 Historical Development and Basic Concepts 374

7.2.1 Dopant Solid Solubility 375

7.2.2 Diffusion from a Macroscopic Viewpoint 377

7.2.3 Analytic Solutions of the Diffusion Equation 379

7.2.4 Gaussian Solution in an Infinite Medium 380

7.2.5 Gaussian Solution Near a Surface 381

7.2.6 Error-Function Solution in an Infinite Medium 382

7.2.7 Error-Function Solution Near a Surface 384

7.2.8 Intrinsic Diffusion Coefficients of Dopants in Silicon 386

7.2.9 Effect of Successive Diffusion Steps 388

7.2.10 Design and Evaluation of Diffused Layers 389

7.2.11 Summary of Basic Diffusion Concepts 392

7.3 Manufacturing Methods and Equipment 392

7.4 Measurement Methods 395

7.4.1 SIMS 396

7.4.2 Spreading Resistance 397

7.4.3 Sheet Resistance 398

7.4.4 Capacitance Voltage 399

7.4.5 TEM Cross Section 399

7.4.62D Electrical Measurements Using Scanning Probe Microscopy 400

7.4.7 Inverse Electrical Measurements 402

7.5 Models and Simulation 403

7.5.1 Numerical Solutions of the Diffusion Equation 403

7.5.2 Modifications to Fick's Laws to Account for Electric Field Effects 406

7.5.3 Modifications to Fick's Laws to Account for Concentration-Dependent Diffusion 409

7.5.4 Segregation 413

7.5.5 Interfacial Dopant Pileup 415

7.5.6 Summary of the Macroscopic Diffusion Approach 417

7.5.7 The Physical Basis for Diffusion at an Atomic Scale 417

7.5.8 Oxidation-Enhanced or -Retarded Diffusion 419

7.5.9 Dopant Diffusion Occurs by Both I and V 422

7.5.10 Activation Energy for Self-Diffusion and Dopant Diffusion 426

7.5.11 Dopant-Defect Interactions 426

7.5.12 Chemical Equilibrium Formulation for Dopant-Defect Interactions 432

7.5.13 Simplified Expression for Modeling 434

7.5.14 Charge State Effects 436

7.6 Limits and Future Trends in Technologies and Models 439

7.6.1 Doping Methods 440

7.6.2 Advanced Dopant Profile Modeling—Fully Kinetic Description of Dopant-Defect Interactions 440

7.7 Summary of Key Ideas 442

7.8 References 443

7.9 Problems 445

Chapter 8 Ion Implantation 451

8.1 Introduction 451

8.2 Historical Development and Basic Concepts 451

8.2.1 Implants in Real Silicon—The Role of the Crystal Structure 461

8.3 Manufacturing Methods and Equipment 463

8.3.1 High-Energy Implants 466

8.3.2 Ultralow Energy Implants 468

8.3.3 Ion Beam Heating 469

8.4 Measurement Methods 469

8.5 Models and Simulations 470

8.5.1 Nuclear Stopping 471

8.5.2 Nonlocal Electronic Stopping 473

8.5.3 Local Electronic Stopping 474

8.5.4 Total Stopping Powers 475

8.5.5 Damage Production 476

8.5.6 Damage Annealing 479

8.5.7 Solid-Phase Epitaxy 482

8.5.8 Dopant Activation 484

8.5.9 Transient-Enhanced Diffusion 486

8.5.10 Atomic-Level Understanding of TED 488

8.5.11 Effects on Devices 497

8.6 Limits and Future Trends in Technologies and Models 499

8.7 Summary of Key Ideas 500

8.8 References 500

8.9 Problems 502

Chapter 9 Thin Film Deposition 509

9.1 Introduction 509

9.2 Historical Development and Basic Concepts 511

9.2.1 Chemical Vapor Deposition (CVD) 512

9.2.1.1 Atmospheric Pressure Chemical Vapor Deposition (APCVD) 513

9.2.1.2 Low-Pressure Chemical Vapor Deposition (LPCVD) 525

9.2.1.3 Plasma-Enhanced Chemical Vapor Deposition (PECVD) 527

9.2.1.4 High-Density Plasma Chemical Vapor Deposition (HDPCVD) 530

9.2.2 Physical Vapor Deposition (PVD) 530

9.2.2.1 Evaporation 531

9.2.2.2 Sputter Deposition 539

9.3 Manufacturing Methods 554

9.3.1 Epitaxial Silicon Deposition 556

9.3.2 Polycrystalline Silicon Deposition 558

9.3.3 Silicon Nitride Deposition 561

9.3.4 Silicon Dioxide Deposition 563

9.3.5 Al Deposition 565

9.3.6 Ti and Ti-W Deposition 566

9.3.7 W Deposition 567

9.3.8 TiSi2 and WSi2 Deposition 567

9.3.9 TiN Deposition 568

9.3.10 Cu Deposition 570

9.4 Measurement Methods 572

9.5 Models and Simulation 573

9.5.1 Models for Deposition Simulations 573

9.5.1.1 Models in Physically Based Simulators Such as SPEEDIE 574

9.5.1.2 Models for Different Types of Deposition Systems 582

9.5.1.3 Comparing CVD and PVD and Typical Parameter Values 587

9.5.2 Simulations of Deposition Using a Physically Based Simulator, SPEEDIE 590

9.5.3 Other Deposition Simulations 598

9.6 Limits and Future Trends in Technologies and Models 601

9.7 Summary of Key Ideas 602

9.8 References 603

9.9 Problems 605

Chapter 10 Etching 609

10.1 Introduction 609

10.2 Historical Development and Basic Concepts 612

10.2.1 Wet Etching 612

10.2.2 Plasma Etching 619

10.2.2.1 Plasma Etching Mechanisms 621

10.2.2.2 Types of Plasma Etch Systems 628

10.2.2.3 Summary of Plasma Systems and Mechanisms 636

10.3 Manufacturing Methods 637

10.3.1 Plasma Etching Conditions and Issues 638

10.3.2 Plasma Etch Methods for Various Films 643

10.3.2.1 Plasma Etching Silicon Dioxide 644

10.3.2.2 Plasma Etching Polysilicon 647

10.3.2.3 Plasma Etching Aluminum 649

10.4 Measurement Methods 650

10.5 Models and Simulation 653

10.5.1 Models for Etching Simulation 653

10.5.2 Etching Models—Linear Etch Model 656

10.5.3 Etching Models—Saturation/Adsorption Model for Ion-Enhanced Etching 663

10.5.4 Etching Models—More Advanced Models 669

10.5.5 Other Etching Simulations 671

10.6 Limits and Future Trends in Technologies and Models 675

10.7 Summary of Key Ideas 676

10.8 References 677

10.9 Problems 679

Chapter 11 Back-End Technology 681

11.1 Introduction 681

11.2 Historical Development and Basic Concepts 687

11.2.1 Contacts 688

11.2.2 Interconnects and Vias 695

11.2.3 Dielectrics 707

11.3 Manufacturing Methods and Equipment 715

11.3.1 Silicided Gates and Source/Drain Regions 716

11.3.2 First-level Dielectric Processing 718

11.3.3 Contact Formation 719

11.3.4 Global Interconnects 721

11.3.5 IMD Deposition and Planarization 723

11.3.6 Via Formation 724

11.3.7 Final Steps 725

11.4 Measurement Methods 725

11.4.1 Morphological Measurements 726

11.4.2 Electrical Measurements 726

11.4.3 Chemical and Structural Measurements 732

11.4.4 Mechanical Measurements 734

11.5 Models and Simulation 737

11.5.1 Silicide Formation 738

11.5.2 Chemical-Mechanical Polishing 744

11.5.3 Reflow 746

11.5.4 Grain Growth 753

11.5.5 Diffusion in Polycrystalline Materials 762

11.5.6 Electromigration 765

11.6 Limits and Future Trends in Technologies and Models 776

11.7 Summary of Key Ideas 780

11.8 References 781

11.9 Problems 784

Appendices 787

A.l Standard Prefixes 787

A.2 Useful Conversions 787

A.3 Physical Constants 788

A.4 Physical Properties of Silicon 788

A.5 Properties of Insulators Used in Silicon Technology 789

A.6 Color Chart for Deposited Si3N4 Films Observed Perpendicularly under Daylight Fluorescent Lighting 789

A.7 Color Chart for Thermally Grown SiO2 Films Observed Perpendicularly under Daylight Fluorescent Lighting 790

A.8 Irwin Curves 791

A.9 Error Function 793

A.10 List of Important Symbols 797

A.11 List of Common Acronyms 798

A.12 Tables in Text 801

A.13 Answers to Selected Problems 802

Index 805

相关图书
作者其它书籍
    返回顶部