

CONTRIBUTIONS TO THE THEORY OF RIEMANN SURFACESPDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:
- 出 版 社:
- 出版年份:1953
- ISBN:
- 页数:264 页
1.Developments of the Theory of Conformal Mapping and Riemann Surfaces Through a Century&By Lars V.Ahlfors 3
2.Variational Methods in the Theory of Riemann Surfaces&By Menahem Schiffer 15
3.Semigroups of Transformations of a Riemann Surface into Itself&By Paul C.Rosenbloom 31
4.An Extremal Boundary Problem&By A.C.Schaeffer 41
5.On Dirichlet's Principle&By Max Shiffman 49
6.A Problem Concerning the Continuation of Riemann Surfaces&By Maurice Heins 55
7.Construction of Functions with Prescribed Properties on Riemann Surfaces&By Leo Sario 63
8.Metric Riemann Surfaces&By Eugenio Calabi 77
9.Some Results Related to Extremal Length&By James A.Jenkins 87
10.Random Walk and the Type Problem of Riemann Surfaces&By Shizuo Kakutani 95
11.Construction of Parabolic Riemann Surfaces by the General Reflection Principle&By Wilfred Kaplan 103
12.On the Ideal Boundary of a Riemann Surface&By H.L.Royden 107
13.Topological Methods on Riemann Surfaces Pseudoharmonic Functions&By Marston Morse and James A.Jenkins 111
14.Coverings of Riemann Surfaces&By Leonce Foures 141
15.Partial Differential Equations and Pseudo-Analytic Functions on Riemann Surfaces&By Lipman Bers 157
16.Dirichlet's Principle and Some Inequalities in the Theory of Conformal Mapping&By Zeev Nehari 167
17.On the Effective Determination of Conformal Maps&By S.E.Warschawski 177
18.Structure of Complex Spaces&By S.Bochner 189
19.Real and Complex Operators on Manifolds&By D.C.Spencer 203
20.Multivalued Solutions of Linear Partial Differential Equations&By S.Bergman 229
21.The Theorem of Riemann-Roch for Adjoint Systems on Kahlerian Varieties&By K.Kodaira 247