RHEOLOGY OF POLYMERIC SYSTEMS PRINCIPLES AND APPLICATIONSPDF电子书下载
- 电子书积分:16 积分如何计算积分?
- 作 者:
- 出 版 社:
- 出版年份:2222
- ISBN:9781569902189
- 页数:520 页
1 Introduction 1
1.1 Definitions and Classification 1
1.1-1 Purely Viscous or Inelastic Material 3
1.1-2 Perfectly Elastic Material 3
1.1-3 Viscoelastic Material 3
1.2 Non-Newtonian Phenomena 3
1.2-1 The Weissenberg Effect 4
1.2-2 Entry Flow, Extrudate Swell, Melt Fracture, and Vibrating Jet 4
1.2-3 Recoil 7
1.2-4 Drag Reduction 7
1.2-5 Hole Pressure Error 13
1.2-6 Mixing 14
1.2-7 Bubbles, Spheres, and Coalescence 15
2 Material Functions and Generalized Newtonian Fluid 18
2.1 Material Functions 19
2.1-1 Simple Shear Flow 19
2.1-2 Sinusoidal Shear Flow 25
2.1-3 Transient Shear Flows 26
2.1-4 Elongational Flow 32
2.2 Generalized Newtonian Models 35
2.2-1 Generalized Newtonian Fluid 36
2.2-2 The Power-Law Model (Ostwald, 1925) 37
2.2-3 The Ellis Model (Bird, Armstrong, and Hassager, 1977) 37
2.2-4 The Carreau Model (1972) 38
2.2-5 The Cross-Williamson Model (1965) 39
2.2-6 The Four-Parameter Carreau Model (Carreau et al., 1979b) 39
2.2-7 The De Kee Model (1977) 40
2.2-8 The Carreau-Yasuda Model (Yasuda, 1976) 41
2.2-9 The Bingham Model (1922) 41
2.2-10 The Casson Model (1959) 42
2.2-11 The Herschel-Bulkley Model (1926) 42
2.2-12 The De Kee-Turcotte Model (1980) 42
2.2-13 Viscosity Models for Complex Flow Situations 43
2.3 Thixotropy, Rheopexy, and Hysteresis 44
2.4 Relations Between Material Functions 48
2.5 Temperature, Pressure, and Molecular Weight Effects 50
2.5-1 Effect of Temperature on Viscosity 50
2.5-2 Effect of Pressure on Viscosity 52
2.5-3 Effect of Molecular Weight on Viscosity 52
2.6 Problems 57
3 Rheometry 61
3.1 Capillary Rheometry 62
3.1-1 Rabinowitsch Analysis 64
3.1-2 End Effects or Bagley Correction 68
3.1-3 Mooney Correction 72
3.1-4 Intrinsic Viscosity Measurements 73
3.2 Coaxial-Cylinder Rheometers 76
3.2-1 Calculation of Viscosity 77
3.2-2 End Effect Corrections 81
3.2-3 Normal Stress Determination 82
3.3 Cone-and-Plate Geometry 84
3.3-1 Viscosity Determination 86
3.3-2 Normal Stress Determination 88
3.3-3 Inertial Effects 90
3.3-4 Criteria for Transient Experiments 94
3.4 Concentric Disk Geometry 98
3.4-1 Viscosity Determination 99
3.4-2 Normal Stress Difference Determination 101
3.5 Yield Stress Measurements 103
3.6 Problems 106
4 Transport Phenomena in Simple Flows 112
4.1 Criteria for Using Purely Viscous Models 113
4.2 Isothermal Flow in Simple Geometries 114
4.2-1 Flow of a Shear-Thinning Fluid in a Circular Tube 114
4.2-2 Film Thickness for the Flow on an Inclined Plane 116
4.2-3 Flow in a Thin Slit 118
4.2-4 Helical Flow in an Annular Section 119
4.2-5 Flow in a Disk-Shaped Mold 122
4.3 Heat Transfer to Non-Newtonian Fluids 126
4.3-1 Convective Heat Transfer in Poiseuille Flow 126
4.3-2 Heat Generation in Poiseuille Flow 134
4.4 Mass Transfer to Non-Newtonian Fluids 138
4.4-1 Mass Transfer to a Power-Law Fluid Flowing on an Inclined Plate 138
4.4-2 Mass Transfer to a Power-Law Fluid in Poiseuille Flow 141
4.5 Boundary Layer Flows 144
4.5-1 Laminar Boundary Layer Flow of Power-Law Fluids over a Plate 144
4.5-2 Laminar Thermal Boundary Layer Flow over a Plate 149
4.6 Problems 152
5 Linear Viscoelasticity 162
5.1 Importance and Definitions 162
5.2 Linear Viscoelastic Models 163
5.2-1 The Maxwell Model 164
5.2-2 Generalized Maxwell Model 170
5.2-3 The Jeffreys Model 178
5.2-4 The Voigt-Kelvin Model 180
5.2-5 Other Linear Models 182
5.3 Relaxation Spectrum 184
5.4 Time-Temperature Superposition 186
5.5 Problems 189
6 Nonlinear Viscoelasticity 194
6.1 Nonlinear Deformations 195
6.1-1 Expressions for the Deformation and Deformation Rate 197
6.1-2 Pure Deformation or Uniaxial Elongation 200
6.1-3 Planar Elongation 204
6.1-4 Expansion or Compression 205
6.1-5 Simple Shear 205
6.2 Formulation of Constitutive Equations 208
6.2-1 Material Objectivity and Formulation of Constitutive Equations 209
6.2-2 Maxwell Convected Models 210
6.2-3 Generalized Newtonian Models 215
6.3 Differential Constitutive Equations 220
6.3-1 The De Witt Model 221
6.3-2 The Oldroyd Models 222
6.3-3 The White-Metzner Model 223
6.3-4 The Marrucci Model 230
6.3-5 The Phan-Thien-Tanner Model 232
6.4 Integral Constitutive Equations 234
6.4-1 The Lodge Model 235
6.4-2 The Carreau Constitutive Equation 239
6.4-3 The K-BKZ Constitutive Equation 247
6.4-4 The LeRoy-Pierrard Equation 254
6.5 Concluding Remarks 257
6.6 Problems 258
7 Constitutive Equations from Molecular Theories 263
7.1 Bead- and Spring-Type Models 264
7.1-1 Hookean Elastic Dumbbell 265
7.1-2 Finitely Extensible Nonlinear Elastic (FENE) Dumbbell 272
7.1-3 Rouse and Zimm Models 276
7.2 Network Theories 284
7.2-1 General Network Concept 284
7.2-2 Rubber-Like Solids 286
7.2-3 Elastic Liquids 288
7.2-4 Recent Developments 290
7.3 Reptation Theories 294
7.3-1 The Tube Model 294
7.3-2 The Doi-Edwards Model 296
7.3-3 The Curtiss-Bird Kinetic Theory 300
7.4 Conformation Tensor Rheological Models 304
7.4-1 Basic Description of the Conformation Model 304
7.4-2 FENE-Charged Macromolecules 307
7.4-3 Rod-Like and Worm-Like Macromolecules 312
7.4-4 Generalization of the Conformation Tensor Model 320
7.5 Problems 327
8 Multiphase Systems 329
8.1 Systems of Industrial Interest 330
8.2 Rheology of Suspensions 331
8.2-1 Viscosity of Dilute Suspensions of Rigid Spheres 332
8.2-2 Rheology of Emulsions 334
8.2-3 Rheology of Concentrated Suspensions of Non-Interactive Particles 343
8.2-4 Rheology of Concentrated Suspensions of Interactive Particles 347
8.2-5 Concluding Remarks 351
8.3 Flow About a Rigid Particle 352
8.3-1 Flow of a Power-Law Fluid Past a Sphere 352
8.3-2 Other Fluid Models 356
8.3-3 Viscoplastic Fluids 356
8.3-4 Viscoelastic Fluids 357
8.3-5 Wall Effects 357
8.3-6 Non-Spherical Particles 359
8.3-7 Drag-Reducing Fluids 360
8.3-8 Behavior in Confined Flows 361
8.4 Flow Around Fluid Spheres 362
8.4-1 Creeping Flow of a Power-Law Fluid Past a Gas Bubble 362
8.4-2 Experimental Results on Single Bubbles 363
8.5 Creeping Flow of a Power-Law Fluid Around a Newtonian Droplet 366
8.5-1 Experimental Results on Falling Drops 367
8.6 Flow in Packed Beds 368
8.6-1 Creeping Power-Law Flow in Beds of Spherical Particles: The Capillary Model 368
8.6-2 Other Fluid Models 373
8.6-3 Viscoelastic Effects 373
8.6-4 Wall Effects 374
8.6-5 Effects of Particle Shape 375
8.6-6 Submerged Objects' Approach to Fluid Flow in Packed Beds:Creeping Flow 376
8.7 Fluidized Beds 377
8.7-1 Minimum Fluidizafion Velocity 378
8.7-2 Bed Expansion Behavior 380
8.7-3 Heat and Mass Transfer in Packed and Fluidized Beds 382
8.8 Problems 383
9 Liquid Mixing 386
9.1 Introduction 387
9.2 Mechanisms of Mixing 388
9.2-1 Laminar Mixing 389
9.2-2 Turbulent Mixing 391
9.3 Scale-Up and Similarity Criteria 391
9.4 Power Consumption in Agitated Tanks 396
9.4-1 Low Viscosity Systems 396
9.4-2 High Viscosity Inelastic Fluids 397
9.4-3 Viscoelastic Systems 412
9.5 Flow Patterns 414
9.5-1 Class I Agitators 415
9.5-2 Class II Agitators 416
9.5-3 Class III Agitators 418
9.6 Mixing and Circulation Times 420
9.7 Gas Dispersion 423
9.7-1 Gas Dispersion Mechanisms 423
9.7-2 Power Consumption in Gas-Dispersed Systems 425
9.7-3 Bubble Size and Holdup 428
9.7-4 Mass Transfer Coefficient 429
9.8 Heat Transfer 430
9.8-1 Class Ⅰ Agitators 431
9.8-2 Class Ⅱ Agitators 432
9.8-3 Class Ⅲ Agitators 434
9.9 Mixing Equipment and its Selection 436
9.9-1 Mechanical Agitation 436
9.9-2 Extruders 436
9.10 Problems 439
Appendix A General Curvilinear Coordinate Systems and Higher Order Tensors 441
A.1 Cartesian Vectors and Summation Convention 442
A.2 General Curvilinear Coordinate Systems 445
A.2-1 Generalized Base Vectors 445
A.2-2 Transformation Rules for Vectors 449
A.2-3 Tensors of Arbitrary Order 452
A.2-4 Metric and Permutation Tensors 454
A.2-5 Physical Components 458
A.3 Covariant Differentiation 462
A.3-1 Definitions 462
A.3-2 Properties of Christoffel Symbols 464
A.3-3 Rules of Covariant Differentiation 465
A.3-4 Grad, Div, and Curl 468
A.4 Integral Transforms 474
A.5 Isotropic Tensors, Objective Tensors and Tensor-Valued Functions 476
A.5-1 Isotropic Tensors 476
A.5-2 Objective Tensors 478
A.5-3 Tensor-Valued Functions 480
A.6 Problems 483
Appendix B Equations of Change 487
B.1 The Equation of Continuity in Three Coordinate Systems 487
B.2 The Equation of Motion in Rectangular Coordinates (x, y, z) 487
B.2-1 In Terms of σ 487
B.2-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant ρ and μ 488
B.3 The Equation of Motion in Cylindrical Coordinates (r,? , z) 488
B.3-1 In Terms of a 488
B.3-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and p 489
B.4 The Equation of Motion in Spherical Coordinates (r,?,φ) 490
B.4-1 In Terms of a 490
B.4-2 In Terms of Velocity Gradients for a Newtonian Fluid with Constant p and u 490
References 492
Notation 503
Subject Index 513