LINEAR TRANSFORMATIONS IN HILBERT SPACE AND THEIR APPLICATIONS TO ANALYSISPDF电子书下载
- 电子书积分:18 积分如何计算积分?
- 作 者:
- 出 版 社:
- 出版年份:1932
- ISBN:
- 页数:622 页
CHAPTER Ⅰ ABSTRACT HILBERT SPACE AND ITS REALIZATIONS 1
1.The Concept of Space 1
2.Abstract Hilbert Space 2
3.Abstract Unitary Spaces 16
4.Linear Manifolds in Hilbert Space 18
5.Realizations of Abstract Hilbert Space 23
CHAPTER Ⅱ TRANSFORMATIONS IN HILBERT SPACE 33
1.Linear Transformations 33
2.Symmetric Transformations 49
3.Bounded Linear Transformations 53
4.Projections 70
5.Isometric and Unitary Transformations 76
6.Unitary Invariance 83
CHAPTER Ⅲ EXAMPLES OF LINEAR TRANSFORMATIONS 86
1.Infinite Matrices 86
2.Integral Operators 98
3.Differential Operators 112
4.Operators of Other Types 124
CHAPTER Ⅳ RESOLVENTS,SPECTRA,REDUCIBILITY 125
1.The Fundamental Problems 125
2.Resolvents and Spectra 128
8.Reducibility 150
CHAPTER Ⅴ SELF-ADJOINT TRANSFORMATIONS 155
1.Analytical Methods 155
2.Analytical Representation of the Resolvent 165
3.The Reducibility of the Resolvent 172
4.The Analytical Representation of a Self-Adjoint Transformation 180
5.The Spectrum of a Self-Adjoint Transformation 184
CHAPTER Ⅵ THE OPERATIONAL CALCULUS 198
1.The Radon-Stieltjes Integral 198
2.The Operational Calculus 221
CHAPTER Ⅶ THE UNITARY EQUIVALENCE OF SELF-ADJOINT TRANSFORMATIONS 242
1.Preparatory Theorems 242
2.Unitary Equivalence 247
3.Self-Adjoint Transformations with Simple Spectra 275
4.The Reducibility of Self-Adjoint Transformations 288
5.Reduction to Principal Axes 294
CHAPTER Ⅷ GENERAL TYPES OF LINEAR TRANSFORMATIONS 299
1.Permutability 299
2.Unitary Transformations 302
3.Normal Transformations 311
4.A Theorem on Factorization 331
CHAPTER Ⅸ SYMMETRIC TRANSFORMATIONS 334
1.The General Theory 334
2.Real Transformations 357
3.Approximation Theorems 365
CHAPTER Ⅹ APPLICATIONS 397
1.Integral Operators 397
2.Ordinary Differential Operators of the First Order 424
3.Ordinary Differential Operators of the Second Order 448
4.Jacobi Matrices and Allied Topics 530
Index 615