当前位置:首页 > 外文
LINEAR TRANSFORMATIONS IN HILBERT SPACE AND THEIR APPLICATIONS TO ANALYSIS
LINEAR TRANSFORMATIONS IN HILBERT SPACE AND THEIR APPLICATIONS TO ANALYSIS

LINEAR TRANSFORMATIONS IN HILBERT SPACE AND THEIR APPLICATIONS TO ANALYSISPDF电子书下载

外文

  • 电子书积分:18 积分如何计算积分?
  • 作 者:
  • 出 版 社:
  • 出版年份:1932
  • ISBN:
  • 页数:622 页
图书介绍:
《LINEAR TRANSFORMATIONS IN HILBERT SPACE AND THEIR APPLICATIONS TO ANALYSIS》目录
标签:

CHAPTER Ⅰ ABSTRACT HILBERT SPACE AND ITS REALIZATIONS 1

1.The Concept of Space 1

2.Abstract Hilbert Space 2

3.Abstract Unitary Spaces 16

4.Linear Manifolds in Hilbert Space 18

5.Realizations of Abstract Hilbert Space 23

CHAPTER Ⅱ TRANSFORMATIONS IN HILBERT SPACE 33

1.Linear Transformations 33

2.Symmetric Transformations 49

3.Bounded Linear Transformations 53

4.Projections 70

5.Isometric and Unitary Transformations 76

6.Unitary Invariance 83

CHAPTER Ⅲ EXAMPLES OF LINEAR TRANSFORMATIONS 86

1.Infinite Matrices 86

2.Integral Operators 98

3.Differential Operators 112

4.Operators of Other Types 124

CHAPTER Ⅳ RESOLVENTS,SPECTRA,REDUCIBILITY 125

1.The Fundamental Problems 125

2.Resolvents and Spectra 128

8.Reducibility 150

CHAPTER Ⅴ SELF-ADJOINT TRANSFORMATIONS 155

1.Analytical Methods 155

2.Analytical Representation of the Resolvent 165

3.The Reducibility of the Resolvent 172

4.The Analytical Representation of a Self-Adjoint Transformation 180

5.The Spectrum of a Self-Adjoint Transformation 184

CHAPTER Ⅵ THE OPERATIONAL CALCULUS 198

1.The Radon-Stieltjes Integral 198

2.The Operational Calculus 221

CHAPTER Ⅶ THE UNITARY EQUIVALENCE OF SELF-ADJOINT TRANSFORMATIONS 242

1.Preparatory Theorems 242

2.Unitary Equivalence 247

3.Self-Adjoint Transformations with Simple Spectra 275

4.The Reducibility of Self-Adjoint Transformations 288

5.Reduction to Principal Axes 294

CHAPTER Ⅷ GENERAL TYPES OF LINEAR TRANSFORMATIONS 299

1.Permutability 299

2.Unitary Transformations 302

3.Normal Transformations 311

4.A Theorem on Factorization 331

CHAPTER Ⅸ SYMMETRIC TRANSFORMATIONS 334

1.The General Theory 334

2.Real Transformations 357

3.Approximation Theorems 365

CHAPTER Ⅹ APPLICATIONS 397

1.Integral Operators 397

2.Ordinary Differential Operators of the First Order 424

3.Ordinary Differential Operators of the Second Order 448

4.Jacobi Matrices and Allied Topics 530

Index 615

相关图书
作者其它书籍
    返回顶部