The theory of error correcting codesPDF电子书下载
- 电子书积分:21 积分如何计算积分?
- 作 者:F.J.MacWilliams
- 出 版 社:North Holland
- 出版年份:2007
- ISBN:0444851933
- 页数:762 页
Chapter 1.Linear codes 1
1.Linear codes 1
2.Properties of a linear code 5
3.At the receiving end 7
4.More about decoding a linear code 15
5.Error probability 18
6.Shannon’s theorem on the existence of good codes 22
7.Hamming codes 23
8.The dual code 26
9.Construction of new codes from old (Ⅱ) 27
10.Some general properties of a linear code 32
11.Summary of Chapter 1 34
Notes on Chapter 1 34
Chapter 2.Nonlinear codes,Hadamard matrices,designs and the Golay code 38
1.Nonlinear codes 38
2.The Plotkin bound 41
3.Hadamard matrices and Hadamard codes 44
4.Conferences matrices 55
5.t-designs 58
6.An introduction to the binary Golay code 64
7.The Steiner system S(5,6,12),and nonlinear single-error cor-recting codes 70
8.An introduction to the Nordstrom-Robinson code 73
9.Construction of new codes from old (Ⅲ) 76
Notes on Chapter 2 78
Chapter 3.An introduction to BCH codes and finite fields 80
1.Double-error-correcting BCH codes (Ⅰ) 80
2.Construction of the field GF(16) 82
3.Double-error-correcting BCH codes (Ⅱ) 86
4.Computing in a finite field 88
Notes on Chapter 3 92
Chapter 4.Finite fields 93
1.Introduction 93
2.Finite fields:the basic theory 95
3.Minimal polynomials 99
4.How to find irreducible polynomials 107
5.Tables of small fields 109
6.The automorphism group of GF(p m) 112
7.The number of irreducible polynomials 114
8.Bases of GF(p m) over GF(p) 115
9.Linearized polynomials and normal bases 118
Notes on Chapter 4 124
Chapter 5.Dual codes and their weight distribution 125
1.Introduction 125
2.Weight distribution of the dual of a binary linear code 125
3.The group algebra 132
4.Characters 134
5.MacWilliams theorem for nonlinear codes 135
6.Generalized MacWilliams theorems for linear codes 141
7.Properties of Krawtchouk polynomials 150
Notes on Chapter 5 153
Chapter 6.Codes,designs and perfect codes 155
1.Introduction 155
2.Four fundamental parameters of a code 156
3.An explicit formula for the weight and distance distribution 158
4.Designs from codes when s≤d’ 160
5.The dual code also gives designs 164
6.Weight distribution of translates of a code 166
7.Designs from nonlinear codes when s’<d 174
8.Perfect codes 175
9.Codes over GF(q) 176
10.There are no more perfect codes 179
Notes on Chapter 6 186
Chapter 7.Cyclic codes 188
1.Introduction 188
2.Definition of a cyclic code 188
3.Generator polynomial 190
4.The check polynomial 194
5.Factors of x -1 196
6.t-error-correcting BCH codes 201
7.Using a matrix over GF(q n) to define a code over GF(q) 207
8.Encoding cyclic codes 209
Notes on Chapter 7 214
Chapter 8.Cyclic codes (contd.):Idempotents and Mattson-Solomon polynomials 216
1.Introduction 216
2.Idempotents 217
3.Minimal ideals,irreducible codes,and primitive idempotents 219
4.Weight distribution of minimal codes 227
5.The automorphism group of a code 229
6.The Mattson-Solomon polynomial 239
7.Some weight distributions 251
Notes on Chapter 8 255
Chapter 9.BCH codes 257
1.Introduction 257
2.The true minimum distance of a BCH code 259
3.The number of information symbols in BCH codes 262
4.A table of BCH codes 266
5.Long BCH codes are bad 269
6.Decoding BCH codes 270
7.Quadratic equations over GF(2 m) 277
8.Double-error-correcting BCH codes are quasi-perfect 279
9.The Carlitz-Uchiyama bound 280
10.Some weight distributions are asymptotically normal 282
Notes on Chapter 9 291
Chapter 10.Reed-Solomon and Justesen codes 294
1.Introduction 294
2.Reed-Solomon codes 294
3.Extended RS codes 296
4.Idempotents of RS codes 296
5.Mapping GF(2m) codes into binary codes 298
6.Burst error correction 301
7.Encoding Reed-Solomon codes 301
8.Generalized Reed-Solomon codes 303
9.Redundant residue codes 305
10.Decoding RS codes 306
11.Justesen codes and concatenated codes 306
Notes on Chapter 10 315
Chapter 11.M DS codes 317
1.Introduction 317
2.Generator and parity check matrices 318
3.The weight distribution of an MDS code 319
4.Matrices with every square submatrix nonsingular 321
5.MDS codes from RS codes 323
6.n-arcs 326
7.The known results 327
8.Orthogonal arrays 328
Notes on Chapter 11 329
Chapter 12.Alternant,Goppa and other generalized BCH codes 332
1.Introduction 332
2.Alternant codes 333
3.Goppa codes 338
4.Further properties of Goppa codes 346
5.Extended double-error-correcting Goppa codes are cyclic 350
6.Generalized Srivastava codes 357
7.Chien-Choy generalized BCH codes 360
8.The Euclidean algorithm 362
9.Decoding alternant codes 365
Notes on Chapter 12 368
Chapter 13.Reed-Muller codes 370
1.Introduction 370
2.Boolean functions 370
3.Reed-Muller Codes 373
4.RM codes and geometries 377
5.The minimum weight vectors generate the code 381
6.Encoding and decoding (Ⅰ) 385
7.Encoding and decoding (Ⅱ) 388
8.Other geometrical codes 397
9.Automorphism groups of the RM codes 398
10.Mattson-Solomon polynomials of RM codes 401
11.The action of the general affine group on Mattson-Solomon polynomials 402
Notes on Chapter 13 403
Chapter 14.First-order Reed-Muller codes 406
1.Introduction 406
2.Pseudo-noise sequences 406
3.Cosets of the first-order Reed-Muller code 412
4.Encoding and decoding R(1,m) 419
5.Bent functions 426
Notes on Chapter 14 431
Chapter 15.Second-order Reed-Muller,Kerdock and Preparata codes 433
1.Introduction 433
2.Weight distribution of second-order Reed-Muller codes 434
3.Weight distribution of arbitrary Reed-Muller codes 445
4.Subcodes of dimension 2m of R(2,m)* and R(2,m) 448
5.The Kerdock code and generalizations 453
6.The Preparata code 466
7.Goethals’ generalization of the Preparata codes 476
Notes on Chapter 15 477
Chapter 16.Quadratic-residue codes 480
1.Introduction 480
2.Definition of quadratic-residue codes 481
3.Idempotents of quadratic-residue codes 484
4.Extended quadratic-residue codes 488
5.The automorphism group of QR codes 491
6.Binary quadratic residue codes 494
7.Double circulant and quasi-cyclic codes 505
8.Quadratic-residue and symmetry codes over GF(3) 510
9.Decoding of cyclic codes and others 512
Notes on Chapter 16 518
Chapter 17.Bounds on the size of a code 523
1.Introduction 523
2.Bounds on A(n,d,w) 524
3.Bounds on A(n,d) 531
4.Linear programming bounds 535
5.The Griesmer bound 546
6.Constructing linear codes:anticodes 547
7.Asymptotic bounds 556
Notes on Chapter 17 566
Chapter 18.Methods for combining codes 567
1.Introduction 567
Part Ⅰ:Product codes and generalizations 568
2.Direct product codes 568
3.Not all cyclic codes are direct products of cyclic codes 571
4.Another way of factoring irreducible cyclic codes 573
5.Concatenated codes:the * construction 575
6.A general decomposition for cyclic codes 578
Part Ⅱ:Other methods of combining codes 581
7.Methods which increase the length 581
7.1 Construction Ⅹ:adding tails to the codewords 581
7.2 Construction Ⅹ4:combining four codes 584
7.3 Single- and double-error-correcting codes 586
7.4 The|a+x|b+x|a+b+x| construction 587
7.5 Piret’s construction 588
8.Constructions related to concatenated codes 589
8.1 A method for improving concatenated codes 589
8.2 Zinov’ev’s generalized concatenated codes 590
9.Methods for shortening a code 592
9.1 Constructions Y 1-Y4 592
9.2 A construction of Helgert and Stinaff 593
Notes on Chapter 18 594
Chapter 19.Self-dual codes and invariant theory 596
1.Introduction 596
2.An introduction to invariant theory 598
3.The basic theorems of invariant theory 607
4.Generalizations of Gleason’s theorems 617
5.The nonexistence of certain very good codes 624
6.Good self-dual codes exist 629
Notes on Chapter 19 633
Chapter 20.The Golay codes 634
1.Introduction 634
2.The Mathieu group M24 636
3.M 24 is five-fold transitive 637
4.The order of M4 is 24.23.22.21.20.48 638
5.The Steiner system S(5,8.24) is unique 641
6.The Golay codes y23 and y24 are unique 646
7.The automorphism groups of the ternary Golay codes 647
8.The Golay codes y 11 and y 12 are unique 648
Notes on Chapter 20 649
Chapter 21.Association schemes 651
1.Introduction 651
2.Association schemes 651
3.The Hamming association scheme 656
4.Metric schemes 659
5.Symplectic forms 661
6.The Johnson scheme 665
7.Subsets of association schemes 666
8.Subsets of symplectic forms 667
9.t-designs and orthogonal arrays 670
Notes on Chapter 21 671
Appendix A.Tables of the best codes known 673
1.Introduction 673
2.Figure 1,a small table of A(n,d) 683
3.Figure 2,an extended table of the best codes known 690
4.Figure 3,a table of A(n,d,w) 691
Appendix B.Finite geometries 692
1.Introduction 692
2.Finite geometries,PG(m,q) and EG(m,q) 692
3.Properties of PG(m,q) and EG(m,q) 697
4.Projective and affine planes 701
Notes on Appendix B 702
Bibliography 703
Index 757
- 《找对职业入对行 职场探访助你锁定职业目标》杨一平编著 2009
- 《Holland-Frei癌症医学手册》李德爱编著 2009
- 《NORTH HOLLAND MATHEMATICS STUDIES NONLINEAR PROBLEM PRESENT AND FUTURE》ALAN DISHOP 1982
- 《NORTH-HOLLAND LINGUISTIC SERIES OLD ENGLISH NOUN MORPHOLOGY A DIACHRONIC STUDY》 1979
- 《HOLLAND AND BREWS MANUAL OF OBSTETRICS FOURTEENTH EDITION》 1982
- 《ANNE FRANK THE DIARY OF A YOUNG GIRL》 1986
- 《NORTH-HOLLAND MATHEMATICS STUDIES 29 PROBABILITIES AND POTENTIAL》CLAUDE DELLACHERIE PAUL-ANDRE MEYER 2222
- 《HANS BRINKER:OR THE SILVER SKATES:A STORY OF LIFE IN HOLLAND》MARY MAPES DODGE 1966
- 《SOME DEVELOPMENTS IN PENAL POLICY AND PRACTICE IN HOLLAND》DR HANS TULKENS 1979
- 《HORTH-HOLLAND MATHEMATICS STUDIES 79 BOUNDARY VALUE PROBLEMS IN QUEUEING SYSTEM ANALYSIS》J.W.COHEN 1983