当前位置:首页 > 其他书籍
多复变函数
多复变函数

多复变函数PDF电子书下载

其他书籍

  • 电子书积分:8 积分如何计算积分?
  • 作 者:(美)R.纳拉西姆汉著
  • 出 版 社:科学出版社
  • 出版年份:1985
  • ISBN:
  • 页数:140 页
图书介绍:
《多复变函数》目录
标签:函数

第1章. 多复变函数的基本性质 1

符号 1

全纯函数 2

Cauchy公式与某些推论 3

开映照定理 5

Wcierstrass定理和Montel定理 6

第2章. 解析开拓:初等理论 9

全纯函数从多圆柱边界的开拓 9

Reinhardt域 10

第3章. 次调和函数与Hartogs定理 23

调和函数和次调和函数的定义与基本性质 23

一些例子和应用 30

对每个变量分别解析的Hartogs定理 35

次调和函数的例外集 38

第4章. 全纯函数奇点的Hartogs定理 41

解析集 41

Riemann开拓定理 42

Radb定理 43

Hartogs连续性定理 45

Hartogs半径的性质 46

某些奇异点集的解析性 51

第5章 有界域的自同构 54

Cartan唯一性定理 54

圆形域的自同构 55

多圆柱和球不解析等价的Poincare定理 57

正常全纯映照 58

Remmect-Stein定理和这个定理的若干推广 59

自同构的极限:Cartan定理Aut(D)在D上的作用,某些离散群的有限生成 64

一个从D?Cn到Cn内的单全纯映照是一个同构 70

第6章 解析开拓:全纯包 73

一个Cn上的域的S-扩充 73

全纯包:基本性质 75

例子:一个Cn内的域的全纯包不再在Cn内;一个不在Cn内的域的全纯包可以在Cn内 79

第7章. 全纯域:凸性理论 83

全纯凸 84

到边界的距离的性质 85

Cartan-Thullen的第一基本定理 87

Cartan-Thullen的第二基本定理 89

应用和例子 94

第8章. 全纯域:Oka定理 104

Hadamard三域定理和Schwarz引理 104

规范多项式的性态 106

Oka定理的Bishop证明 111

第9章. 有界域的自同构:Cartan定理 115

向量场与Lie定理 116

Cartan定理 125

伴随于Aut(D)的向量场的存在性 128

Cartan定理的证明 132

参考文献 139

相关图书
作者其它书籍
返回顶部