当前位置:首页 > 其他书籍
玻色-爱因斯坦凝聚的基础与前沿=FUNDAMENTALS AND NEW FRONTIERS OF BOSE-EINSTEIN CONDENSATION  英文  影印版
玻色-爱因斯坦凝聚的基础与前沿=FUNDAMENTALS AND NEW FRONTIERS OF BOSE-EINSTEIN CONDENSATION  英文  影印版

玻色-爱因斯坦凝聚的基础与前沿=FUNDAMENTALS AND NEW FRONTIERS OF BOSE-EINSTEIN CONDENSATION 英文 影印版PDF电子书下载

其他书籍

  • 电子书积分:20 积分如何计算积分?
  • 作 者:汤克夫编著
  • 出 版 社:
  • 出版年份:2014
  • ISBN:
  • 页数:0 页
图书介绍:
《玻色-爱因斯坦凝聚的基础与前沿=FUNDAMENTALS AND NEW FRONTIERS OF BOSE-EINSTEIN CONDENSATION 英文 影印版》目录

1.Fundamentals of Bose-Einstein Condensation 1

1.1 Indistinguishability of Identical Particles 1

1.2 Ideal Bose Gas in a Uniform System 3

1.3 Off-Diagonal Long-Range Order:Bose System 6

1.4 Off-Diagonal Long-Range Order:Fermi System 10

1.5 U(1)Gauge Symmetry 11

1.6 Ground-State Wave Function of a Bose System 13

1.7 BEC and Superfluidity 15

1.8 Two-Fluid Model 20

1.9 Fragmented Condensate 23

1.9.1 Two-state model 23

1.9.2 Degenerate double-well model 25

1.9.3 Spin-1 antiferromagnetic BEC 27

1.10 Interference Between Independent Condensates 28

1.11 Feshbach Resonance 31

2.Weakly Interacting Bose Gas 33

2.1 Interactions Between Neutral Atoms 33

2.2 Pseudo-Potential Method 36

2.3 Bogoliubov Theory 40

2.3.1 Bogoliubov transformations 40

2.3.2 Bogoliubov ground state 45

2.3.3 Low-lying excitations and condensate fraction 48

2.3.4 Properties of Bogoliubov ground state 50

2.4 Bogoliubov Theory of Quasi-One-Dimensional Torus 54

2.4.1 Case of BEC at rest:stability of BEC 55

2.4.2 Case of rotating BEC:Landau criterion 56

2.4.3 Ground state of BEC in rotating torus 59

2.5 Bogoliubov-de Gennes(BdG)Theory 60

2.6 Method of Binary Collision Expansion 65

2.6.1 Equation of state 65

2.6.2 Cluster expansion ofpartition function 66

2.6.3 Ideal Bose and Fermi gases 67

2.6.4 Matsubara formula 69

3.Trapped Systems 73

3.1 Ideal Bose Gas in a Harmonic Potential 73

3.1.1 Transition temperature 75

3.1.2 Condensate fraction 76

3.1.3 Chemical potential 77

3.1.4 Specific heat 77

3.2 BEC in One-and Two-Dimensional Parabolic Potentials 79

3.2.1 Density of states 79

3.2.2 Transition temperature 79

3.2.3 Condensate fraction 80

3.3 Semiclassical Distribution Function 81

3.4 Gross-Pitaevskii Equation 83

3.5 Thomas-Fermi Approximation 84

3.6 Collective Modes in the Thomas-Fermi Regime 88

3.6.1 Isotropic harmonic potential 89

3.6.2 Axisymmetric trap 91

3.6.3 Scissors mode 92

3.7 Variational Method 93

3.7.1 Gaussian variational wave function 94

3.7.2 Collective modes 96

3.8 Attractive Bose-Einstein Condensate 98

3.8.1 Collective modes 99

3.8.2 Collapsing dynamics of an attractive condensate 102

4.Linear Response and Sum Rules 105

4.1 Linear Response Theory 105

4.1.1 Linear response of density fluctuations 105

4.1.2 Retarded response function 108

4.2 Sum Rules 109

4.2.1 Longitudinal f-sum rule 110

4.2.2 Compressibility sum rule 112

4.2.3 Zero energy gap theorem 114

4.2.4 Josephson sum rule 115

4.3 Sum-Rule Approach to Collective Modes 120

4.3.1 Excitation operators 121

4.3.2 Virial theorem 122

4.3.3 Kohn theorem 123

4.3.4 Isotropic trap 124

4.3.5 Axisymmetric trap 127

5.Statistical Mechanics of Superfluid Systems in a Moving Frame 129

5.1 Transformation to Moving Frames 129

5.2 Elementary Excitations of a Superfluid 131

5.3 Landau Criterion 133

5.4 Correlation Functions at Thermal Equilibrium 134

5.5 Normal Fluid Density 136

5.6 Low-Lying Excitations of a Superfluid 140

5.7 Examples 141

5.7.1 Ideal Bose gas 141

5.7.2 Weakly interacting Bose gas 143

6.Spinor Bose-Einstein Condensate 145

6.1 Internal Degrees of Freedom 145

6.2 General Hamiltonian of Spinor Condensates 146

6.3 Spin-1 BEC 151

6.3.1 Mean-field theory of a spin-1 BEC 153

6.3.2 Many-body states in single-mode approximation 157

6.3.3 Superflow,spin texture,and Berry phase 161

6.4 Spin-2 BEC 163

7.Vortices 171

7.1 Hydrodynamic Theory of Vortices 171

7.2 Quantized Vortices 174

7.3 Interaction Between Vortices 180

7.4 Vortex Lattice 181

7.4.1 Dynamics of vortex nucleation 181

7.4.2 Collective modes of a vortex lattice 183

7.5 Fractional Vortices 186

7.6 Spin Current 187

7.7 Fast Rotating BECs 189

7.7.1 Lowest Landau level approximation 189

7.7.2 Mean field quantum Hall regime 192

7.7.3 Many-body wave funetions of a fast rotating BEC 194

8.Fermionic Superfluidity 197

8.1 Ideal Fermi Gas 197

8.2 Fermi Liquid Theory 200

8.3 Cooper Problem 205

8.3.1 Two-body problem 205

8.3.2 Many-body problem 209

8.4 Bardeen-Cooper-Schriefier (BCS) Theory 211

8.5 BCS-BEC Crossover at T=0 215

8.6 Superfluid Transition Temperature 219

8.7 BCS-BEC Crossover at T≠0 221

8.8 Gor'kov-Melik-Barkhudarov Correction 225

8.9 Unitary Gas 228

8.10 Imbalanced Fermi Systems 231

8.11 P-Wave Superfluid 234

8.11.1 Generalized pairing theory 234

8.11.2 Spin-triplet p-wave states 238

9.Low-Dimensional Systems 241

9.1 Non-interacting Systems 241

9.2 Hohenberg-Mermin-Wagner Theorem 243

9.3 Two-Dimensional BEC at Absolute Zero 246

9.4 Berezinskii-Kosterlitz-Thouless Transition 247

9.4.1 Universal jump 247

9.4.2 Quasi long-range order 249

9.4.3 Renormalization-group analysis 250

9.5 Quasi One-Dimensional BEC 252

9.6 Tonks-Girardeau Gas 256

9.7 Lieb-Liniger Model 258

10.Dipolar Gases 261

10.1 Dipole-Dipole Interaction 261

10.1.1 Basic properties 261

10.1.2 Order of magnitude and length scale 263

10.1.3 D-wave nature 264

10.1.4 Tuning the dipole-dipole interaction 265

10.2 Polarized Dipolar BEC 266

10.2.1 Nonlocal Gross-Pitaevskii equation 266

10.2.2 Stability 267

10.2.3 Thomas-Fermi limit 269

10.2.4 Quasi two-dimensional systems 271

10.3 Spinor-Dipolar BEC 273

10.3.1 Einstein-de Haas effect 274

10.3.2 Flux closure and ground-state circulation 274

11.Optical Lattices 277

11.1 Optical Potential 277

11.1.1 Optical trap 277

11.1.2 Optical lattice 280

11.2 Band Structure 283

11.2.1 Bloch theorem 283

11.2.2 Brillouin zone 285

11.2.3 Bloch oscillations 286

11.2.4 Wannier function 287

11.3 Bose-Hubbard Model 288

11.3.1 Bose-Hubbard Hamiltonian 288

11.3.2 Superfluid-Mott-insulator transition 289

11.3.3 Phase diagram 291

11.3.4 Mean-field approximation 292

11.3.5 Supersolid 295

12.Topological Excitations 297

12.1 Homotopy Theory 297

12.1.1 Homotopic relation 297

12.1.2 Fundamental group 299

12.1.3 Higher homotopy groups 302

12.2 Order Parameter ManifoId 303

12.2.1 Isotropy group 303

12.2.2 Spin-1 BEC 304

12.2.3 Spin-2 BEC 305

12.3 Classification of Defects 306

12.3.1 Domains 306

12.3.2 Line defects 306

12.3.3 Point defects 311

12.3.4 Skyrmions 313

12.3.5 Influence of different types of defects 316

12.3.6 Topological charges 318

Appendix A Order of Phase Transition,Clausius-Clapeyron Formula,and Gibbs-Duhem Relation 321

Appendix B Bogoliubov Wave Functions in Coordinate Space 323

B.1 Ground-State Wave Function 323

B.2 One-Phonon State 327

Appendix C Effective Mass,Sound Velocity,and Spin Susceptibility of Fermi Liquid 329

Appendix D Derivation of Eq.(8.155) 333

Appendix E f-Sum Rule 335

Bibliography 337

Index 347

返回顶部