Chapter 1 Number Theory 1
1.1.Induction 1
1.2.Binomial Coefficients 17
1.3.Greatest Common Divisors 36
1.4.The Fundamental Theorem of Arithmetic 58
1.5.Congruences 62
1.6.Dates and Days 73
Chapter 2 Groups Ⅰ 82
2.1.Functions 82
2.2.Permutations 97
2.3.Groups 115
Symmetry 128
2.4.Lagrange's Theorem 134
2.5.Homomorphisms 143
2.6.Quotient Groups 156
2.7.Group Actions 178
2.8.Counting with Groups 194
Chapter 3 Commutative Rings Ⅰ 203
3.1.First Properties 203
3.2.Fields 216
3.3.Polynomials 225
3.4.Homomorphisms 233
3.5.Greatest Common Divisors 239
Euclidean Rings 252
3.6.Unique Factorization 261
3.7.Irreducibility 267
3.8.Quotient Rings and Finite Fields 278
3.9.Officers,Fertilizer,and a Line at Infinity 289
Chapter 4 Goodies 301
4.1.Linear Algebra 301
Vector Spaces 301
Linear Transformations 318
Applications to Fields 329
4.2.Euclidean Constructions 332
4.3.Classical Formulas 345
4.4.Insolvability of the General Quintic 363
Formulas and Solvability by Radicals 368
Translation into Group Theory 371
4.5.Epilog 381
Chapter 5 Groups Ⅱ 385
5.1.Finite Abelian Groups 385
5.2.The Sylow Theorems 397
5.3.The Jordan-H?1der Theorem 408
5.4.Presentations 420
Chapter 6 Commutative Rings Ⅱ 437
6.1.Prime Ideals and Maximal Ideals 437
6.2.Unique Factorization 445
6.3.Noetherian Rings 456
6.4.Varieties 462
6.5.Gr?bner Bases 480
Generalized Division Algorithm 482
Gr?bner Bases 493
Hints to Exercises 505
Bibliography 519
Index 521
- 《市政工程基础》杨岚编著 2009
- 《零基础学会素描》王金著 2019
- 《高级英语阅读与听说教程》刘秀梅编著 2019
- 《计算机网络与通信基础》谢雨飞,田启川编著 2019
- 《生物质甘油共气化制氢基础研究》赵丽霞 2019
- 《看图自学吉他弹唱教程》陈飞编著 2019
- 《激光加工实训技能指导理实一体化教程 下》王秀军,徐永红主编;刘波,刘克生副主编 2017
- 《AutoCAD 2019 循序渐进教程》雷焕平,吴昌松,陈兴奎主编 2019
- 《少儿电子琴入门教程 双色图解版》灌木文化 2019
- 《花时间 我的第一堂花艺课 插花基础技法篇》(日)花时间编辑部编;陈洁责编;冯莹莹译 2020