当前位置:首页 > 其他书籍
超导中的纳米科学和工程:英文影印版=Nanoscience and Engineering in Superconductivety
超导中的纳米科学和工程:英文影印版=Nanoscience and Engineering in Superconductivety

超导中的纳米科学和工程:英文影印版=Nanoscience and Engineering in SuperconductivetyPDF电子书下载

其他书籍

  • 电子书积分:20 积分如何计算积分?
  • 作 者:刘立群著
  • 出 版 社:
  • 出版年份:2014
  • ISBN:
  • 页数:0 页
图书介绍:
《超导中的纳米科学和工程:英文影印版=Nanoscience and Engineering in Superconductivety》目录

1 Guided Vortex Motion and Vortex Ratchets in Nanostructured Superconductors&Alejandro V.Silhanek,Joris Van de Vondel,and Victor V.Moshchalkov 1

1.1 Introduction 1

1.2 Equation of Motion 2

1.3 Guided Vortex Motion 5

1.3.1 Transverse Electric Field and Guided Vortex Motion 5

1.3.2 Expenmental Results and Theoretical Investigations 6

1.4 Ratchets 11

1.4.1 Basic Ingredients 13

1.4.2 Experimental Considerations 13

1.4.3 Experimental Results and Theoretical Investigations 15

1.5 Conclusion 20

References 21

2 High-Tc Films:From Natural Defects to Nanostructure Engineering of Vortex Matter&Roger W?rdenweber 25

2.1 Introduction 25

2.2 Vortex Matter in High-Tc Superconductors 29

2.2.1 Vortex Motion in Ideal Superconductors 29

2.2.2 Flux Pinning and Summation Theories 30

2.2.3 Pinning Mechanism in HTS 35

2.3 Vortex Manipulation in HTS Films 35

2.3.1 Vortex Manipulation via Artificial Structures 36

2.3.2 Theoretical Considerations of Vortex Manipulation via Antidots 39

2.3.3 Experimental Demonstration 45

2.4 Vortex Matter in Superconducting Devices 56

2.4.1 Low-Frequency Noise in SQUIDs 58

2.4.2 Vortex Matter in Microwave Devices 66

2.5 Conclusions 74

References 75

3 Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning&Wolfgang Lang and Johannes D.Pedarnig 81

3.1 Introduction 81

3.2 Defect Creation by Ion Irradiation 83

3.2.1 Methods 83

3.2.2 Ion Species 84

3.2.3 Ion Energy Dependence 85

3.2.4 Angle Dependence 88

3.2.5 Experimental Results 89

3.3 Electrical Properties after Ion Irradiation 90

3.3.1 Brief Review 90

3.3.2 Experimental Techniques 91

3.3.3 Resistivity 91

3.3.4 Hall Effect 93

3.3.5 Long-term Stability 96

3.4 Nano-patterning by Masked Ion Beam Irradiation 98

3.4.1 Previous Attempts to Nanopatterning of HTS 98

3.4.2 Computer Simulation Results 99

3.4.3 Experimental Patterning Tests 100

3.5 Conclusions and Outlook 101

References 102

4 Frontiers Problems of the Josephson Effect:From Macroscopic Quantum Phenomena Decay to High-Tc Superconductivity&Antonio Barone,Floriana Lombardi,and Francesco Tafuri 105

4.1 Introduction 105

4.2 Grain Boundary Junctions:The Tool 106

4.3 Retracing d-wave Order Parameter Symmetry in Josephson Structures 110

4.4 Macroscopic Quantum Phenomena in Josephson Systems:Fundamentals and Low Critical Temperature SuperconductorJunctions 114

4.4.1 Resistively and Capacitively Shunted Junction Model and the"Washboard"Potential 114

4.4.2 Macroscopic Quantum Tunnelling(MQT) and Energy Level Quantization(ELQ) 116

4.4.3 Developments of Quantum Measurements for Macroscopic Quantum Coherence Experiments 118

4.5 Macroscopic Quantum Effects in High-Tc Josephson Junctions and in Unconventional Conditions 120

4.5.1 Macroscopic Quantum Phenomena in High-Tc Josephson Junctions 120

4.5.2 Switching Current Statistics in Moderately Damped Josephson Junctions 125

4.5.3 MQT Current Bias Modulation 126

4.6 Mesoscsopic Effects and Coherence in HTS Nanostructures 127

4.7 Conclusions 129

References 130

5 Intrinsic Josephson Tunneling in High-Temperature Superconductors&A.Yurgens and D.Winkler 137

5.1 Introduction 137

5.2 Sample Fabrication 140

5.2.1 Simple Mesa 140

5.2.2 Flip-Chip Zigzag Bridges 141

5.2.3 Other Methods 142

5.3 Electrical Characterization 143

5.3.1 I-V Curves of Intrinsic Josephson Junctions in Bi2212 143

5.3.2 Critical Current Density of Individual CuO Plane 144

5.3.3 Superconducting Critical Current of Individual CuO Planes in Bi2212 144

5.3.4 Tunneling Spectroscopy 149

5.3.5 THz Radiation 152

5.3.6 Joule Heating in Mesas 155

5.3.7 The C-Axis Positive and Negative Magneto-Resistance in a Perpendicular Magnetic Field 157

5.4 Summary 159

References 159

6 Stacked Josephson Junctions&S.Madsen,N.F.Pedersen,and P.L.Christiansen 163

6.1 Introduction 163

6.2 Model 163

6.2.1 Numerical Method 168

6.2.2 Analytic Solutions 169

6.3 Bunching of Fluxons 170

6.3.1 Bunching due to Coupling Between Equations 170

6.3.2 Bunching due to Boundary Conditions 175

6.3.3 External Microwave Signal 178

6.3.4 External Cavity 179

6.4 Experimental Work 184

6.5 Summary 185

References 185

7 Point-Contact Spectroscopy of Multigap Superconductors&P.Samuely,P.Szabó,Z.Pribulová,and J.Ka?mar?k 187

7.1 Point-Contact Andreev Reflexion Spectroscopy 188

7.2 Two Gaps in MgB2 and Doped MgB2 Systems 189

7.2.1 MgB2 189

7.2.2 Aluminum and Carbon-Doped MgB2 195

7.3 Multiband Superconductivity in the 122-type Iron Pnictides 203

7.4 Conclusions 208

References 208

8 Nanoscale Structures and Pseudogap in Under-doped High-Tc Superconductors& M.Saarela and F.V.Kusmartsev 211

8.1 Introduction 211

8.2 Microscopic Origin of Two Types of Charge Carriers 214

8.3 Pseudogap and Two Types of Charge Carriers 220

8.4 Nanostructures in STM Measurements 225

8.5 Conclusions 228

References 228

9 Scanning Tunneling Spectroscopy of High Tc Cuprates&Ivan Maggio-Aprile,Christophe Berthod,Nathan Jenkins,Yanina Fasano,Alexandre Piriou,and ?ystein Fischer 231

9.1 Introduction 231

9.2 Basic Principles of the STM/STS Technique 232

9.2.1 Operating Principles 232

9.2.2 Topography 233

9.2.3 Local Tunneling Spectroscopy 234

9.2.4 STS of Superconductors 235

9.3 Spectral Characteristics of HTS Cuprates 236

9.3.1 General Spectral Features of HTS Cuprates 236

9.3.2 Superconducting Gap and Pseudogap 238

9.4 Revealing Vortices and the Structure of their Cores by STS 240

9.4.1 Vortex Matter in Conventional Superconductors 241

9.4.2 Vortex Matter in HTS 242

9.4.3 Electronic Structure of the Cores 243

9.5 Local Electronic Modulations seenby STM 246

9.5.1 Local Modulations of the Superconducting Gap 247

9.5.2 Local Modulations of the DOS 249

9.5.3 Summary 251

References 252

10 Scanning Tunnelling Spectroscopy of Vortices with Normal and Superconducting tips&J.G.Rodrigo,H.Suderow,and S.Vieira 257

10.1 Introduction 257

10.2 Experimental:Low Temperature STM with Superconducting tips 259

10.2.1 Low Temperature STM 259

10.2.2 Tips Preparation and Characterization 260

10.2.3 Spectroscopic Advantages of Superconducting tips 262

10.3 Vortices Studied by STS 265

10.3.1 The Vortex Lattice:General Properties and Visualization 265

10.3.2 NbSe2 Studied with Normal and Superconducting tips 266

10.3.3 NbSe2 vs.NbS2 269

10.3.4 The Vortex Lattice in thin Films:A 2D Vortex Lattice 271

10.4 Other Scenarios for the Interplay of Magnetism and Superconductivity 273

10.5 Summary and Prospects 277

References 278

11 Surface Superconductivity Controlled by Electric Field&Pavel Lipavsk?,Jan Kolá?ek,and Klaus Morawetz 281

11.1 Introduction 281

11.2 Limit of Large Thomas-Fermi Screening Length 282

11.3 de Gennes Approach to the Boundary Condition 284

11.4 Link to the Limit of Large Screening Length 287

11.5 Electric Field Effect on Surface Superconductivity 289

11.5.1 Nucleation of Surface Superconductivity 289

11.5.2 Solution in Dimensionless Notation 290

11.5.3 Surface Energy 293

11.6 Magneto-capacitance 294

11.6.1 Discontinuity in Magneto-capacitance 295

11.6.2 Estimates of Magnitude 295

11.7 Summary 296

References 297

12 Polarity-Dependent Vortex Pinning and Spontaneous Vortex-AntivOrtex Structures in Superconductor/Ferromagnet Hybrids&Simon J.Bending,Milorad V.Milo?evi?,and Victor V.Moshchalkov 299

12.1 Introduction 299

12.2 Theoretical Description of F-S Hybrids 300

12.2.1 Ginzburg-Landau Theory 300

12.2.2 London Theory 304

12.3 Experimental Results 307

12.3.1 Scanning Hall Probe Imaging 307

12.3.2 Low Moment Dot Arrays with Perpendicular Magnetisation 308

12.3.3 High Moment Dot Arrays with Perpendicular Magnetisation 311

12.3.4 High Moment Arrays with In-Plane Magnetisation 315

12.4 Conclusions 320

References 321

13 Superconductor/Ferromagnet Hybrids:Bilayers and Spin Switching&J.Aarts,C.Attanasio,C.Bell,C.Cirillo,M.Flokstra,and J.M.v.d.Knaap 323

13.1 Introduction 323

13.2 Some History of the Field 324

13.3 Sample Preparation and Ferromagnet Characteristics 327

13.4 Interface Transparency 329

13.5 Domain Walls in S/F Bilayers 333

13.5.1 Domain Walls in Nb/Cu43Ni57 334

13.5.2 Domain Walls in Nb/Py 336

13.6 On the Superconducting Spin Switch 339

13.6.1 Spin Switch Efiects with CuNi 340

13.6.2 Spin Switch Effects with Py 341

13.7 Concluding Remarks 343

References 345

14 Interplay Between Ferromagnetism and Superconductivity&Jacob Linder and Asle Sudb ? 349

14.1 Introduction 349

14.2 Artifical Synthesis:F|S Hybrid Structures 351

14.2.1 Basic Physics 351

14.2.2 Quasiclassical Theory 355

14.2.3 F|S Bilayers 361

14.2.4 S|F|S Josephson Junctions 365

14.2.5 F|S|F Spin-valves 369

14.2.6 Future Prospects 373

14.3 Intrinsic Coexistence:Ferromagnetic Superconductors 374

14.3.1 Experimental Results 374

14.3.2 Phenomenological Framework 376

14.3.3 Probing the Pairing Symmetry 383

14.3.4 Future Prospects 384

References 385

Index 389

返回顶部