当前位置:首页 > 天文地球
大气科学中的数值方法及应用
大气科学中的数值方法及应用

大气科学中的数值方法及应用PDF电子书下载

天文地球

  • 电子书积分:10 积分如何计算积分?
  • 作 者:王斌,季仲贞著
  • 出 版 社:北京:科学出版社
  • 出版年份:2006
  • ISBN:7030171721
  • 页数:208 页
图书介绍:
《大气科学中的数值方法及应用》目录

第1章 大气科学与高性能科学计算 1

1.1 高性能科学计算的重要性 1

1.2 大气数值模拟是一种典型的高性能科学计算问题 3

1.3 计算地球流体力学的过去、现在和未来 4

第2章 关于泛函分析的一些预备知识 7

2.1 赋范线性空间 7

2.2 希尔伯特空间 11

2.3 有界线性算子与有界线性泛函 12

2.4 变分原理 17

第3章 发展方程与平方守恒差分格式 20

3.1 发展方程及其差分格式 20

3.2 主要稳定性定理 22

3.3 广义反对称算子的构造 24

3.4 定步长显式平方守恒差分格式 32

3.5 变步长显式平方守恒差分格式 36

3.6 协调耗散算子 37

3.7 误差分析 42

3.8 球面正压大气浅水波方程显式能量守恒格式的设计 44

第4章 显式平方守恒格式的几何原理 51

4.1 从几何的角度研究显式平方守恒格式的构造 51

4.2 一类新的显式平方守恒格式及其误差分析 53

4.3 一类新的显式Runge-Kutta法 55

4.4 显式蛙跳格式的改造和利用 61

4.5 基于预估校正法的显式平方守恒格式 63

4.6 数值检验 64

第5章 非守恒情形和多守恒情形 70

5.1 非守恒情形整体性质的分析 70

5.2 原显式平方守恒格式的改造 71

5.3 全球大气动力体系的多守恒特征 75

5.4 方程表示形式的选取 78

5.5 隐式多守恒差分格式的构造 83

5.6 显式多守恒差分格式的构造 86

6.1 Hamilton体系与辛几何、辛算子法 95

第6章 求解大气动力学方程的辛方法 95

6.2 推广辛定义 96

6.3 线性无穷维Hamilton系统 100

6.4 Hamilton体系与平方守恒体系 104

6.5 无穷小辛空间差分算子的构造 106

6.6 线性无限维Hamilton系统的求解 111

6.7 辛算子法与大气动力系统 113

6.8 非线性辛算子法 115

6.9 球面正压大气浅水波方程的求解 121

第7章 分裂算法的研究 130

7.1 计算时效性问题 130

7.2 快慢过程的相对可分性与算子分裂模型 131

7.3 隐式平方守恒算子分裂算法 139

7.4 显式平方守恒算子分裂算法 141

7.5 其他算子分裂算法 143

7.6 线性与非线性的分裂算法 145

7.7 算子分裂中的区域分裂 148

7.8 数值试验与讨论 150

第8章 半解析和半隐式平方守恒格式 154

8.1 基本原理 154

8.2 球面正压大气浅水波方程的半解析平方守恒格式 161

8.3 球面正压大气浅水波方程的半隐式平方守恒格式 166

8.4 基于半解析平方守恒格式的区域分裂算法 167

8.5 数值试验 167

第9章 新一代大气环流模式动力框架的设计 171

9.1 几种常用动力框架设计方案 171

9.2 延伸的标准大气层结 173

9.3 基本控制方程及其整体性质 178

9.4 带权等面积坐标 182

9.5 基于显式平方守恒格式的动力框架设计 186

9.6 基于半隐式平方守恒格式的动力框架设计 193

9.7 数值试验 200

主要参考文献 206

相关图书
作者其它书籍
返回顶部