当前位置:首页 > 环境安全
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究
垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究

垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究PDF电子书下载

环境安全

  • 电子书积分:10 积分如何计算积分?
  • 作 者:张彩香,王焰新编著
  • 出 版 社:北京:中国环境科学出版社
  • 出版年份:2010
  • ISBN:9787511102065
  • 页数:223 页
图书介绍:本书是国家自然科学基金(杰出青年科学基金、重点项目和面上项目各1项)的研究成果。本书研究目标是表征渗透液中DOM和EDDS,研究其相互作用机理,为合理选择渗透液处理工艺、探讨渗透液有机污染物在地下水系统中的迁移转化规律提供科学基础。研究结果表明渗滤液中溶解有机质是由一系列不同分子量、不同化学特性的大分子组成,并且这些特性随填埋场的年龄、填埋组分及填埋场所处的气候条件有关。
《垃圾渗滤液中溶解有机质与内分泌干扰物相互作用研究》目录

第1章 绪论 153

1.1 研究意义 153

1.1.1 研究背景 153

1.1.2 目标 154

1.1.3 研究路线 155

1.2 垃圾渗滤液 156

1.2.1 现代市政生活垃圾填埋场 157

1.2.2 垃圾填埋场渗滤液的特性 158

1.3 垃圾渗滤液中内分泌干扰物 160

1.3.1 天然和合成雌激素 161

1.3.2 邻苯二甲酸盐 162

1.3.3 烷基酚 164

1.3.4 植物雌激素 164

1.4 水环境中溶解有机质的表征 165

1.5 溶解有机质和有机污染物的相互作用 165

第2章 垃圾渗滤液中溶解有机质的表征 167

2.1 引言 167

2.2 材料与实验方式 167

2.2.1 样品采集 167

2.2.2 超滤分离DOM 168

2.2.3 DOM的分组 168

2.2.4 荧光光谱和紫外测量 168

2.2.5 分子量分组 169

2.2.6 元素分析 169

2.2.7 核磁共振分析 169

2.2.8 傅立叶变换红外分析 170

2.3 结果与讨论 170

2.3.1 渗滤液的化学特性 170

2.3.2 DOM分子量分布的超滤测定结果 171

2.3.3 DOM的树脂分组结果 173

2.3.4 元素分析 173

2.3.5 渗滤液组分的HPLC 174

2.3.6 紫外吸收光谱 176

2.3.7 荧光光谱 176

2.3.8 质子核磁共振 177

2.3.9 红外光谱 178

2.4 结论 178

第3章 垃圾渗滤液中有机污染物 180

3.1 运用GC/MS表征垃圾渗滤液中有机污染物 180

3.1.1 引言 180

3.1.2 材料和方法 180

3.1.3 结果与讨论 181

3.1.4 结论 183

3.2 运用SDE-GC×GC/ToFMS表征垃圾渗滤液中壬基酚同分异构体 183

3.2.1 引言 183

3.2.2 材料和方法 184

3.2.3 结果与讨论 186

3.2.4 结论 189

3.3 垃圾渗滤液中内分泌干扰物 189

3.3.1 引言 189

3.3.2 材料和方法 190

3.3.3 结果与讨论 193

3.3.4 结论 197

第4章 垃圾渗滤液中大分子有机物在线裂解分析 198

4.1 引言 198

4.2 材料和方法 199

4.2.1 酸解 199

4.2.2 碱解 200

4.2.3 氧化铜氧化 200

4.2.4 在线裂解-色谱-质谱(Py/GC/MS)和现场甲基化裂解-色谱-质谱(Py/GC/MS/TMAH) 200

4.2.5 核磁共振 200

4.2.6 GC/MS和元素分析 200

4.3 结果与讨论 201

4.3.1 在线裂解-色谱-质谱 201

4.3.2 现场甲基化裂解-色谱-质谱 201

4.4 结论 204

第5章 垃圾渗滤液中溶解有机质与内分泌干扰物的相互作用机理研究 206

5.1 垃圾渗滤液中DOM与EEDs的吸附机理 206

5.1.1 引言 206

5.1.2 材料和方法 206

5.1.3 结果与讨论 207

5.1.4 总结 210

5.2 垃圾渗滤液DOM对EEDs光催化降解的影响 210

5.2.1 引言 210

5.2.2 材料和方法 212

5.2.3 结果与讨论 213

5.2.4 结论 221

第6章 结论 223

List of Tables 6

Table 1-1 Composition of municipal garbage in some countries 6

Table 1-2 Composition of municipal garbage in some cities of China 6

Table 1-3 The percentage of different approaches of municipal garbage treatment in some developed countries 7

Table 1-4 The percentage of different approaches of treatment methods of municipal garbage in some cities of China 7

Table 1-5 The concentration range of pollutants in landfill leachate 9

Table 1-6 Changes of leachate properties with landfill age 9

Table 1-7 The leachate properties from the landfills in different cities in China 9

Table 1-8 Changes between leachate properties and treatment methods 11

Table 1-9 Concentrations of natural and synthetic hormones in wastewater treatment plants(WWTPs) 13

Table l-10 Reported concentrations of natural and synthetic estrogens in surface waters 14

Table 1-1l Physical properties of eighteen phthalate esters 14

Table l-12 Selected parameters controlling the environmental distribution of phthalate esters 15

Table 1-13 Reported phthalate concentrations in landfill leachate 16

Table 2-1 Characteristics of landfill leachate samples from the three landfills 26

Table 2-2 The distribution of total dissolved carbon and nitrogen in each fraction separated by UF 27

Table 2-3 The main parameters in each fraction separated by UF 27

Table 2-4 The distribution of total dissolved carbon and nitrogen in each fraction isolated by XAD-8/-4 resin 28

Table 2-5 Elemental compositions of isolated fractions from leachate DOM 30

Table 3-1 Organic matters in DOM from landfill leachate 48

Table 3-2 GC×GC retention times and mass spectral features of most abundant NP isomers,structure assignment of isomers based on comparison with data published recently and their synthetic standards 65

Table 3-3 QA/QC of SDE method proved by GC/MS 67

Table 3-4 Results of determination of NP isomers in landfill leachate samples Using GC×GC/ToFMS 68

Table 3-5 Objective substances of EEDs 71

Table 3-6 Ions for the quantitative analysis of silylation derivatives of target EEDs and internal standards 73

Table 3-7 The linear range for the target EEDs by GC/MS 74

Table 3-8 The results of BPA,E1,E2 and PAEs measurement 79

Table 3-9 Sterols in R and J-landfills 84

Table 4-1 Typical pyrolysis products of DOM 90

Table 4-2 Typical pyrolysis products of DOM 93

Table 4-3 Typical pyrolysis products of non-extractable residues after acid hydrolysis of R1-3 with in situ methylation 101

Table 5-1 Sorption coefficient(1gKOC Values)onto DOM and Ocanol-Water Partition Coefficients(1gKowValues)of Selected EEDs 108

Table 5-2 ESR data of R1-3 and the bound R1-3 with BPA,E2 and E1 110

Table 5-3 Characteristics of BPA,E2 and E1 117

Table 5-4 The influence of DOM on phototransformation parameters of BPA and E2 under sunlit irradiation 120

Table 5-5 Composition(as% of total carbon)of DOM isolates used in this study as determined by 1H NMR spectroscopy and extinction coefficients(ε)measured at 280 nm 122

Table 5-6 Pseudo-First-Order Rate Coefficients for Direct and Indirect Phototransformation of EEDs with catalyst TiO2 or H2O2 under UV irradiation 123

Table 5-7 Mass fragment ion(m/z)and relative abundance(%)of probable intermediates and BPA obtained from GC/MS spectra 128

List of Figures 5

Fig.1-1 Scheme of this research 5

Fig.2-1 Flow chart of organic matter size fractionation using filtration and ultrafiltration 22

Fig.2-2 Scheme of the tandem XAD-8/XAD-4 isolation procedure of DOM portion from the landfill leachate 23

Fig.2-3 Chromatograms of three DOM samples on ODS-C18 reserved-phase support 31

Fig.2-4 Comparision of chromatograms between R1-3 and R1-5 on ODS-C18 reserved-phase support 31

Fig.2-5 Chromatograms of isolated fraction by XAD resins on ODS-C 1 8 reserved-phase support 32

Fig.2-6 RID and UV254 nm chromatograms of unfractionated DOM from three landfill leachate samples and fractionated R1-3 33

Fig.2-7 Distribution of UV absorbance area(%)and RID%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions 34

Fig.2-8 RID and UV254 nm chromatograms of fractionated R1-3 by XAD-8/-4 column 34

Fig.2-9 Distribution of UV absorbance area(%)and DOC%among the four distinct peaks of the HPSEC chromatograms for each of the DOM fractions 35

Fig.2-10 UV spectra of isolated fractions from leachate DOM 36

Fig.2-11 Typical fluorescence EEM observed in landfill leachate from R-landfill sampled inAugust,2006 37

Fig.2-12 SF spectra for original DOM and its six fractions at offsets of 20 nm 38

Fig.2-13 The relative abundance(%)ofeach peak(285,350,385,and 430 nm)in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,in leachate samples isolated by UF 39

Fig.2-14 The relative abundance(%)comparison between isolated fraction ofR1-3(05)and of R1-5 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ 39

Fig.2-15 The relative abundance(%)comparison between isolated fraction of R1-3(06)and of J1-3 by XAD in the synchronous fluorescence spectra and the fluorescence index,Peak Ⅰ/Peak Ⅱ,Peak Ⅲ/Peak Ⅱ 40

Fig.2-16 1H NMR spectra of fractions of DOM samples collected from different sources 41

Fig.2-17 Infrared spectra of DOM fractions from R-landfill 43

Fig.3-1 Total ion and selected ion chromatograms(m/z=85)of extracted R1-3 without pH adjustment using n-hexane 47

Fig.3-2 Total ion and selected ion chromatograms(m/z=60)of extracted R1-3 with pH>12 and pH<2 using DCM 48

Fig.3-3 Total ion chromatograms and selected ion chromatograms(m/z=74)of adsorbed organic compounds eluated by methanol 53

Fig.3-4 Total ion chromatograms(TMS)and zoom out between 55 and 65 min extracted using methanol 53

Fig.3-5 Total ion chromatograms of three fractions extracted from three landfills 54

Fig.3-6 Relative proportions of nine compound classes of organic matter of different treatment and membrane filterate samples obtained by GC/MS 55

Fig.3-7 Molecular weight distribution during different treatment processes detected by HPLC with RID and UV detectors 56

Fig.3-8 Contour plot and its 1D GC of TNP using GC×GC/ToFMS 61

Fig.3-9 Zoomed section of contour plot of 4-NPs compared to synthetic mixture of NP including NP194(36),NP93(a,b),NP112,NP111(a,b),NP152,NP65 and NP9 62

Fig.3-10 Peak table for Fig.3-8 62

Fig.3-11 Chromatograph of TNP compared to synthetic mixture of NP using GC/MS 63

Fig.3-12 Mass spectra and chromatogram of synthetic NP36 and NP93 standard using GC/MS and GC×GC/ToFMS 64

Fig.3-13 Mass spectra of unidentified para-NP isomers 66

Fig.3-14 Total ion chromatograph(TIC)of leachate from new cell of East Oaks landfill analyzed by SDE coupled with GC×GC/ToFMS 67

Fig.3-15 Dumping blocks,leachate treatment facilities and sampling points 72

Fig.3-16 Full scan chromatogram of target EEDs 73

Fig.3-17 The recovery of EEDs from different elution solvents 75

Fig.3-18 The effects of NaCl concentration and pH on the recoveries of EEDs 75

Fig.3-19 The effect of aquatic matrices on the recovery of EEDs 76

Fig.3-20 The effect of extraction methods on the recovery of EEDs 77

Fig.3-21 The seasonal variation of EEDs in raw leachate 78

Fig.3-22 The relationship between the concentration of BPA and DEHP and the DOC at the sampling points in the leachate conventional treatment process 80

Fig.3-23 The concentration of BPA and DEHP at the sampling points in the leachate ultrafiltrate treatment processs 81

Fig.3-24 Chromatograms of the sterols in landfill leachate 81

Fig.4-1 Analysis scheme 87

Fig.4-2 Reconstructed ion current of pyrolysis products at 610℃ of R1-6 from R-landfill 91

Fig.4-3 Pyrolysis/methylation(TMAH)-GC/MS chromatograms of R1-6 at 610℃,R1-6 at 700℃,and R1-5 at 610℃ 96

Fig.4-4 Pyrolysis/methylation-GC/MS chromatograms of R1-6,H1-6 and J1-6 at 610℃ 97

Fig.4-5 Percentage of the major groups of pyrolytic products of HMW from three landfills 97

Fig.4-6 GC/MS of(a)the ether extractable compounds derivated by TMS from acid hydrolysis of R1-3,and(b)DCM extractable compounds derivated by TMS after ether extraction of acid hydrolysis of R1-3 99

Fig.4-7 Total ion chromatogram(TIC)and specific ion chromatogram(SIC,m/z=74) of the pyrolysates of non extractable residues after acid hydrolysis of R1-3 with in situ methylation 100

Fig.4-8 Total ion chromatogram(TIC)of the pyrolysates of non extractable residues after alkaline oxidation of R1-3 with in situ methylation 103

Fig.5-1 Adsorption isotherms for the bound with EEDs 108

Fig.5-2 1H NMR spectra of R1-3 and bound R1-3 with BPA,E2 and E1 109

Fig.5-3 Narrow range ESR spectra of untreated R1-3 and bound R1-3 with BPA,E2 and E1 111

Fig.5-4 FTIR of R1-3 and bound R1-3 with BPA,E2 and E1 111

Fig.5-5 Percent removal of PAEs by various concentrations of DOM(R1-3) 112

Fig.5-6 Expected removal percentage of a pollutant with lg Koc of 1-7 using 50,100,and 150 mg/L DOM 113

Fig.5-7 Schematic illustration of the photoreactor 117

Fig.5-8 Photochemical transformation for(a)BPA,and(b)E2 in the presence and the absence of DOM isolated from three landfill leachates under sunlit irradiation 119

Fig.5-9 UV-vis absorbance spectra for BPA,E2 and E1 119

Fig.5-10 ESR spectra of R1-3 before and after irradiation 121

Fig.5-11 The scheme of proposed mechanism of photosensitized degradation of BPA involved dissolved oxygen in HS solution 122

Fig.5-12 Photodecomposition behavior of BPA,E2 and E1 in DOM by TiO2 powder under UV irradiation 124

Fig.5-13 FTIR of BPA(a)after photodegradation,and(b)BPA standard 125

Fig.5-14 UV absorption spectra of BPA before and after photodegradation 125

Fig.5-15 Evolution of HPLC different chromatograms between initial and photocatalytic treatment of a BPA with R1-3 solution 126

Fig.5-16 GC/MS chromatograms of sample solution after irradiation 127

Fig.5-17 Proposed degradation mechanism of BPA under UV irradiation with catalvzer 128

Fig.5-18 FTIR diagrams of E2 and E1 130

Fig.5-19 Evolution of HPLC chromatograms of(a)different chromatograms of E1 with R1-3 solution between initial and photocatalytic treatment;(b)those of E2 with R1-3 during photocatalytic treatment 130

Fig.5-20 GC/MS chromatograms of E2+E1 solution after irradiation 131

相关图书
作者其它书籍
返回顶部