Summer Institute on Set Theoretic TopologyPDF电子书下载
- 电子书积分:8 积分如何计算积分?
- 作 者:
- 出 版 社:
- 出版年份:1955
- ISBN:
- 页数:148 页
Hour Lectures 5
TRANSFORMA TIONS&D.Montgomery 5
SET THEORETIC TOPOLOGY-Present and future&G.T.Whyburn 6
DEVELOPMENT of a theory for manifolds&R.L.Wilder 7
Certain classical problems of euclidean topology&E.E.Moise 15
Remarks on the applications of set theoretic topology to analysis analysis&Edwin Hewitt 17
What topology is here to stay?&R.H.Bing 25
Seminar on Generalized Manifolds 28
Examples of generalized manifolds&M.L.Curtis 28
Generalized manifolds with boundary&P.A.White 29
Direct products of generalized manifolds with boundary&Thomas R.Brahana 30
Mappings of manifolds&R.L.Wilder 30
Deformations of generalized manifolds&M.L.Curtis 32
Homotopy manifolds&M.L.Curtis 34
Seminar on Topology of 3-space 35
Historical background&R.L.Wilder 35
Some aspects of knot theory&Alan Goldman 36
Pathology in 3-space&O.G.Harrold,Jr. 38
Decompositions of E3 into points and tame arcs&R.H.Bing 40
Approximating surfaces with polyhedral ones&R.H.Bing 47
Some consequences of the approximation theorem of Bing&O.G.Harrold,Jr 53
Some other problems proposed in the 3-dimensional manifolds seminar 56
Seminar on 3-Dimensional Manifolds 57
Seminar on Semi-Metric Spaces 58
Introductory remarks on semi-metric spaces&F.Burton Jones 58
On semi-metric spaces&Louis F.McAuley 58
Semi-metric spaces&Morton Brown 62
Seminar on Structure of Continua Topology of the Place 65
Structure of continua&G.T.Whyburn 65
On homogeneity&F.Burton Jones 66
Problems in the plane&F.Burton Jones 68
The pseudo-arc&R.H.Bing 70
Homogeneous continua&C.E.Burgess 73
Collections of pseudo-arcs in the plane—Homogeneity of the universal curve&R.D.Anderson 76
Problems on universal curves,pseudo-arcs and related topics&R.D.Anderson 77
On decomposition of continua into aposyndetic continua&L.F.McAuley 78
Reduction of open mappings&R.F.Williams 80
Equicontinuity in continuous collections of continua&E.J.Dyer 81
Continuous collection of continuous curves&Mary-Elizabeth Hamstrom 82
Connectedness&Mary Ellen Rudin 84
Flat spaces&J.Slye 85
Seminar on Fixed Points 87
The Cartwright Littlewood theorem&O.H.Hamilton 87
The fixed point property on quasi-complexes&Eldon Dyer 88
Fixed point sets under involutions in E3&Deane Montgomery 89
Essential fixed points&M.X.Fort,Jr. 90
Seminar on Transformations and Transformation Groups 92
Report of the seminar&E.E.Floyd 92
Homeomorphisms having an equicontinuous family of iterates&E.Hemmingsen 96
The embedding of homeomorphisms in flows&M.K.Fort,Jr. 97
Looal properties of open mappings&R.F.Williams 98
Certain transformations which lower dimensions&Eldon Dyer 99
Report on the monotone,light open,and monotone open mappings of manifolds and re-lated spaces&R.D.Anderson 99
Local arc-wise connectivity in the space Hn of homeomorphisms of Sn onto itself&J.H.Roberts 100
Seminar on Paracompact Spaces 102
Report&Melvin Hendriksen 102
A survey of paracompactness and related topics&E.Michael 102
Supercomplete spaces&J.R.Isbell 106
A Cech fundamental group&A.J.Goldman 107
Seminar on Fibre Spaces 110
Covering homotopy property&M.L.Curtis 110
Homotopy equivalence of Fiber Bundles&M.L.Curtis 111
Seminar on Function Spaces and Topological Algebra 115
Harmonic functions in Banach algebras&Richard Arens 115
Generalized power series algebras&Richard Arens 116
Algebras of linear transformations and of functionals&R.C.Buck 117
Report on rings of continuous functions&Melvin Hendricksen 121
Report on algebras of bounded continuous functions&Edwin H ewitt 124
Hyper-real fields&L.Gillman 128
Some special spaces&L.Gillman 130
Topological structure of normed linear spaces&V.L.Klee,Jr. 132
Rings of uniformly continuous functions&J.R.Isbell 134
Differentiation in Banach algebras&S.B.Myers 135
Algebras of analytic functions&Walter Rudin 137
Topological algebra seminar&Richard Arens 140
Seminar on Extension Theorems 142
Extensions of mappings into n-cubes&M.K.Fort,Jr. 142
Recent analogues of the Urysohn-Tietze extension theorem&E.Michael 143
Selection theorems for continuous functions&E.Michael 144