当前位置:首页 > 其他书籍
FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS
FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS

FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITSPDF电子书下载

其他书籍

  • 电子书积分:25 积分如何计算积分?
  • 作 者:ANANT AGARWAL
  • 出 版 社:
  • 出版年份:2005
  • ISBN:
  • 页数:984 页
图书介绍:
《FOUNDATIONS OF ANALOG AND DIGITAL ELECTRONIC CIRCUITS》目录
标签:

CHAPTER 1 The Circuit Abstraction 3

1.1 The Power of Abstraction 3

1.2 The Lumped Circuit Abstraction 5

1.3 The Lumped Matter Discipline 9

1.4 Limitations of the Lumped Circuit Abstraction 13

1.5 Practical Two-Terminal Elements 15

1.5.1 Batteries 16

1.5.2 Linear Resistors 18

1.5.3 Associated Variables Convention 25

1.6 Ideal Two-Terminal Elements 29

1.6.1 Ideal Voltage Sources, Wires, and Resistors 30

1.6.2 Element Laws 32

1.6.3 The Current Source — Another Ideal Two-Terminal Element 33

1.7 Modeling Physical Elements 36

1.8 Signal Representation 40

1.8.1 Analog Signals 41

1.8.2 Digital Signals—Value Discretization 43

1.9 Summary and Exercises 46

CHAPTER 2 Resistive Networks 53

2.1 Terminology 54

2.2 Kirchhoff's Laws 55

2.2.1 KCL 56

2.2.2 KVL 60

2.3 Circuit Analysis: Basic Method 66

2.3.1 Single-Resistor Circuits 67

2.3.2 Quick Intuitive Analysis of Single-Resistor Circuits 70

2.3.3 Energy Conservation 71

2.3.4 Voltage and Current Dividers 73

2.3.5 A More Complex Circuit 84

2.4 Intuitive Method of Circuit Analysis: Series and Parallel Simplification 89

2.5 More Circuit Examples 95

2.6 Dependent Sources and the Control Concept 98

2.6.1 Circuits with Dependent Sources 102

2.7 A Formulation Suitable for a Computer Solution 107

2.8 Summary and Exercises 108

CHAPTER 3 Network Theorems 119

3.1 Introduction 119

3.2 The Node Voltage 119

3.3 The Node Method 125

3.3.1 Node Method: A Second Example 130

3.3.2 Floating Independent Voltage Sources 135

3.3.3 Dependent Sources and the Node Method 139

3.3.4 The Conductance and Source Matrices 145

3.4 Loop Method 145

3.5 Superposition 145

3.5.1 Superposition Rules for Dependent Sources 153

3.6 Thevenin's Theorem and Norton's Theorem 157

3.6.1 The Thevenin Equivalent Network 157

3.6.2 The Norton Equivalent Network 167

3.6.3 More Examples 171

3.7 Summary and Exercises 177

CHAPTER 4 Analysis of Nonlinear Circuits 193

4.1 Introduction to Nonlinear Elements 193

4.2 Analytical Solutions 197

4.3 Graphical Analysis 203

4.4 Piecewise Linear Analysis 206

4.4.1 Improved Piecewise Linear Models for Nonlinear Elements 214

4.5 Incremental Analysis 214

4.6 Summary and Exercises 229

CHAPTER 5 The Digital Abstraction 243

5.1 Voltage Levels and the Static Discipline 245

5.2 Boolean Logic 256

5.3 Combinational Gates 258

5.4 Standard Sum-of-Products Representation 261

5.5 Simplifying Logic Expressions 262

5.6 Number Representation 267

5.7 Summary and Exercises 274

CHAPTER 6 The MOSFET Switch 285

6.1 The Switch 285

6.2 Logic Functions Using Switches 288

6.3 The MOSFET Device and Its S Model 288

6.4 MOSFET Switch Implementation of Logic Gates 291

6.5 Static Analysis Using the S Model 296

6.6 The SR Model of the MOSFET 300

6.7 Physical Structure of the MOSFET 301

6.8 Static Analysis Using the SR Model 306

6.8.1 Static Analysis of the NAND Gate Using the SR Model 311

6.9 Signal Restoration, Gain, and Nonhneanty 314

6.9.1 Signal Restoration and Gain 314

6.9.2 Signal Restoration and Nonhneanty 317

6.9.3 Buffer Transfer Characteristics and the Static Discipline 318

6.9.4 Inverter Transfer Characteristics and the Static Discipline 319

6.10 Power Consumption in Logic Gates 320

6.11 Active Pullups 321

6.12 Summary and Exercises 322

CHAPTER 7 The MOSFET Amplifier 331

7.1 Signal Amplification 331

7.2 Review of Dependent Sources 332

7.3 Actual MOSFET Characteristics 335

7.4 The Switch-Current Source (SCS) MOSFET Model 340

7.5 The MOSFET Amplifier 344

7.5.1 Biasing the MOSFET Amplifier 349

7.5.2 The Amplifier Abstraction and the Saturation Discipline 352

7.6 Large-Signal Analysis of the MOSFET Amplifier 353

7.6.1 vIN Versus vOUT in the Saturation Region 353

7.6.2 Valid Input and Output Voltage Ranges 356

7.6.3 Alternative Method for Valid Input and Output Voltage Ranges 363

7.7 Operating Point Selection 365

7.8 Switch Unified (SU) MOSFET Model 386

7.9 Summary and Exercises 389

CHAPTER 8 The Small-Signal Model 405

8.1 Overview of the Nonlinear MOSFET Amplifier 405

8.2 The Small-Signal Model 405

8.2.1 Small-Signal Circuit Representation 413

8.2.2 Small-Signal Circuit for the MOSFET Amplifier 418

8.2.3 Selecting an Operating Point 420

8.2.4 Input and Output Resistance, Current and Power Gain 423

8.3 Summary and Exercises 447

CHAPTER 9 Energy Storage Elements 457

9.1 Constitutive Laws 461

9.1.1 Capacitors 461

9.1.2 Inductors 466

9.2 Series and Parallel Connections 470

9.2.1 Capacitors 471

9.2.2 Inductors 472

9.3 Special Examples 473

9.3.1 MOSFET Gate Capacitance 473

9.3.2 Wiring Loop Inductance 476

9.3.3 IC Wiring Capacitance and Inductance 477

9.3.4 Transformers 478

9.4 Simple Circuit Examples 480

9.4.1 Sinusoidal Inputs 482

9.4.2 Step Inputs 482

9.4.3 Impulse Inputs 488

9.4.4 Role Reversal 489

9.5 Energy, Charge, and Flux Conservation 489

9.6 Summary and Exercises 492

CHAPTER 10 First-Order Transients in Linear Electrical Networks 503

10.1 Analysis of RC Circuits 504

10.1.1 Parallel RC Circuit, Step Input 504

10.1.2 RC Discharge Transient 509

10.1.3 Series RC Circuit, Step Input 511

10.1.4 Series RC Circuit, Square-Wave Input 515

10.2 Analysis of RL Circuits 517

10.2.1 Series RL Circuit, Step Input 517

10.3 Intuitive Analysis 520

10.4 Propagation Delay and the Digital Abstraction 525

10.4.1 Definitions of Propagation Delays 527

10.4.2 Computing tpd from the SRC MOSFET Model 529

10.5 State and State Variables 538

10.5.1 The Concept of State 538

10.5.2 Computer Analysis Using the State Equation 540

10.5.3 Zero-Input and Zero-State Response 541

10.5.4 Solution by Integrating Factors 544

10.6 Additional Examples 545

10.6.1 Effect of Wire Inductance in Digital Circuits 545

10.6.2 Ramp Inputs and Linearity 545

10.6.3 Response of an RC Circuit to Short Pulses and the Impulse Response 550

10.6.4 Intuitive Method for the Impulse Response 553

10.6.5 Clock Signals and Clock Fanout 554

10.6.6 RC Response to Decaying Exponential 558

10.6.7 Series RL Circuit with Sine-Wave Input 558

10.7 Digital Memory 561

10.7.1 The Concept of Digital State 561

10.7.2 An Abstract Digital Memory Element 562

10.7.3 Design of the Digital Memory Element 563

10.7.4 A Static Memory Element 567

10.8 Summary and Exercises 568

CHAPTER 11 Energy and Power in Digital Circuits 595

11.1 Power and Energy Relations for a Simple RC Circuit 595

11.2 Average Power in an RC Circuit 597

11.2.1 Energy Dissipated During Interval T1 599

11.2.2 Energy Dissipated During Interval T2 601

11.2.3 Total Energy Dissipated 603

11.3 Power Dissipation in Logic Gates 604

11.3.1 Static Power Dissipation 604

11.3.2 Total Power Dissipation 605

11.4 NMOS Logic 611

11.5 CMOS Logic 611

11.5.1 CMOS Logic Gate Design 616

11.6 Summary and Exercises 618

CHAPTER 12 Transients in Second-Order Circuits 625

12.1 Undriven LC Circuit 627

12.2 Undriven, Series RLC Circuit 640

12.2.1 Under-Damped Dynamics 644

12.2.2 Over-Damped Dynamics 648

12.2.3 Critically-Damped Dynamics 649

12.3 Stored Energy in Transient, Series RLC Circuit 651

12.4 Undriven, Parallel RLC Circuit 654

12.4.1 Under-Damped Dynamics 654

12.4.2 Over-Damped Dynamics 654

12.4.3 Critically-Damped Dynamics 654

12.5 Driven, Series RLC Circuit 654

12.5.1 Step Response 657

12.5.2 Impulse Response 661

12.6 Driven, Parallel RLC Circuit 678

12.6.1 Step Response 678

12.6.2 Impulse Response 678

12.7 Intuitive Analysis of Second-Order Circuits 678

12.8 Two-Capacitor or Two-Inductor Circuits 684

12.9 State-Variable Method 689

12.10 State-Space Analysis 691

12.10.1 Numerical Solution 691

12.11 Higher-Order Circuits 691

12.12 Summary and Exercises 692

CHAPTER 13 Sinusoidal Steady State: Impedance and Frequency Response 703

13.1 Introduction 703

13.2 Analysis Using Complex Exponential Drive 706

13.2.1 Homogeneous Solution 706

13.2.2 Particular Solution 707

13.2.3 Complete Solution 710

13.2.4 Sinusoidal Steady-State Response 710

13.3 The Boxes: Impedance 712

13.3.1 Example: Series RL Circuit 718

13.3.2 Example: Another RC Circuit 722

13.3.3 Example: RC Circuit with Two Capacitors 724

13.3.4 Example: Analysis of Small Signal Amplifier with Capacitive Load 729

13.4 Frequency Response: Magnitude and Phase versus Frequency 731

13.4.1 Frequency Response of Capacitors, Inductors,and Resistors 732

13.4.2 Intuitively Sketching the Frequency Response of RC and RL Circuits 737

13.4.3 The Bode Plot: Sketching the Frequency Response of General Functions 741

13.5 Filters 742

13.5.1 Filter Design Example: Crossover Network 744

13.5.2 Decoupling Amplifier Stages 746

13.6 Time Domain versus Frequency Domain Analysis using Voltage-Divider Example 751

13.6.1 Frequency Domain Analysis 751

13.6.2 Time Domain Analysis 754

13.6.3 Comparing Time Domain and Frequency Domain Analyses 756

13.7 Power and Energy in an Impedance 757

13.7.1 Arbitrary Impedance 758

13.7.2 Pure Resistance 760

13.7.3 Pure Reactance 761

13.7.4 Example: Power in an RC Circuit 763

13.8 Summary and Exercises 765

CHAPTER 14 Sinusoidal Steady State: Resonance 777

14.1 Parallel RLC, Sinusoidal Response 777

14.1.1 Homogeneous Solution 778

14.1.2 Particular Solution 780

14.1.3 Total Solution for the Parallel RLC Circuit 781

14.2 Frequency Response for Resonant Systems 783

14.2.1 The Resonant Region of the Frequency Response 792

14.3 Series RLC 801

14.4 The Bode Plot for Resonant Functions 808

14.5 Filter Examples 808

14.5.1 Band-pass Filter 809

14.5.2 Low-pass Filter 810

14.5.3 High-pass Filter 814

14.5.4 Notch Filter 815

14.6 Stored Energy in a Resonant Circuit 816

14.7 Summary and Exercises 821

CHAPTER 15 The Operational Amplifier Abstraction 837

15.1 Introduction 837

15.1.1 Historical Perspective 838

15.2 Device Properties of the Operational Amplifier 839

15.2.1 The Op Amp Model 839

15.3 Simple Op Amp Circuits 842

15.3.1 The Non-Inverting Op Amp 842

15.3.2 A Second Example: The Inverting Connection 844

15.3.3 Sensitivity 846

15.3.4 A Special Case: The Voltage Follower 847

15.3.5 An Additional Constraint: v+ - v- ≈ 0 848

15.4 Input and Output Resistances 849

15.4.1 Output Resistance, Inverting Op Amp 849

15.4.2 Input Resistance Inverting Connection 851

15.4.3 Input and Output R For Non-Inverting Op Amp 853

15.4.4 Generalization on Input Resistance 855

15.4.5 Example: Op Amp Current Source 855

15.5 Additional Examples 857

15.5.1 Adder 858

15.5.2 Subtracter 858

15.6 Op Amp RC Circuits 859

15.6.1 Op Amp Integrator 859

15.6.2 Op Amp Differentiator 862

15.6.3 An RC Active Filter 863

15.6.4 The RC Active Filter—Impedance Analysis 865

15.6.5 Sallen-Key Filter 866

15.7 Op Amp in Saturation 866

15.7.1 Op Amp Integrator in Saturation 867

15.8 Positive Feedback 869

15.8.1 RC Oscillator 869

15.9 Two-Ports 872

15.10 Summary and Exercises 873

CHAPTER 16 Diodes 905

16.1 Introduction 905

16.2 Semiconductor Diode Characteristics 905

16.3 Analysis of Diode Circuits 908

16.3.1 Method of Assumed States 908

16.4 Nonlinear Analysis with RL and RC 912

16.4.1 Peak Detector 912

16.4.2 Example: Clamping Circuit 915

16.4.3 A Switched Power Supply using a Diode 918

16.5 Additional Examples 918

16.5.1 Piecewise Linear Example: Clipping Circuit 918

16.5.2 Exponentiation Circuit 918

16.5.3 Piecewise Linear Example: Limiter 918

16.5.4 Example: Fidl-Wave Diode Bridge 918

16.5.5 Incremental Example: Zener-Diode Regulator 918

16.5.6 Incremental Example: Diode Attenuator 918

16.6 Summary and Exercises 919

APPENDIX A Maxwell's Equations and the Lumped Matter Discipline 927

A.1 The Lumped Matter Discipline 927

A.1.1 The First Constraint of the Lumped Matter Discipline 927

A.1.2 The Second Constraint of the Lumped Matter Discipline 930

A.1.3 The Third Constraint of the Lumped Matter Discipline 932

A.1.4 The Lumped Matter Discipline Applied to Circuits 933

A.2 Deriving Kirchhoff's Laws 934

A.3 Deriving the Resistance of a Piece of Material 936

APPENDIX B Trigonometric Functions and Identities 941

B.l Negative Arguments 941

B.2 Phase-Shifted Arguments 942

B.3 Sum and Difference Arguments 942

B.4 Products 943

B.5 Half-Angle and Twice-Angle Arguments 943

B.6 Squares 943

B.7 Miscellaneous 943

B.8 Taylor Series Expansions 944

B.9 Relations to ejo 944

APPENDIX C Complex Numbers 947

C.1 Magnitude and Phase 947

C.2 Polar Representation 948

C.3 Addition and Subtraction 949

C.4 Multiplication and Division 949

C.5 Complex Conjugate 950

C.6 Properties of ejo 951

C.7 Rotation 951

C.8 Complex Functions of Time 952

C.9 Numerical Examples 952

APPENDIX D Solving Simultaneous Linear Equations 957

Answers to Selected Problems 959

Figure Credits 971

Index 973

返回顶部