Biomaterials The Intersection of Biology and Materials SciencePDF电子书下载
- 电子书积分:15 积分如何计算积分?
- 作 者:J.S.Temenoff
- 出 版 社:Inc
- 出版年份:2008
- ISBN:
- 页数:478 页
1 Materials for Biomedical Applications 1
1.1 Introduction to Biomaterials 1
1.1.1 Important Definitions 1
1.1.2 History and Current Status of the Field 2
1.1.3 Future Directions 5
1.2 Biological Response to Biomaterials 7
1.3 Biomaterial Product Testing and FDA Approval 8
1.4 Types of Biomaterials 8
1.4.1 Metals 9
1.4.2 Ceramics 9
1.4.3 Polymers 10
1.4.4 Naturally Derived vs.Synthetic Polymers 11
1.5 Processing of Biomaterials 12
1.6 Important Properties of Biomaterials 12
1.6.1 Degradative Properties of Biomaterials 12
1.6.2 Surface Properties of Biomaterials 13
1.6.3 Bulk Properties of Biomaterials 14
1.6.4 Characterization Techniques 14
1.7 Principles of Chemistry 15
1.7.1 Atomic Structure 15
1.7.2 Atomic Models 16
1.7.2.1 Bohr Model 16
1.7.2.2 Wave-Mechanical Model 17
1.7.3 Atomic Orbitals 17
1.7.3.1 Shapes of Subshells(Orbitals) 17
1.7.3.2 Order of Subshells and the Aufbau Principle 18
1.7.4 Valence Electrons and the Periodic Table 19
1.7.5 Ionic Bonding 21
1.7.5.1 Bonding and Force-Distance Curves 21
1.7.5.2 Characteristics of the Ionic Bond 22
1.7.6 Covalent Bonding 23
1.7.6.1 Atomic Orbitals and Hybridization 23
1.7.6.2 Molecular Orbitals 26
1.7.6.3 Mixed Bonds 26
1.7.7 Metallic Bonding 27
1.7.8 Secondary Forces 28
Summary 28
Problems 29
References 30
Additional Reading 31
2 Chemical Structure of Biomaterials 32
2.1 Introduction:Bonding and the Structure of Biomaterials 32
2.2 Structure of Metals 33
2.2.1 Crystal Structures 33
2.2.1.1 Face-Centered Cubic Structure 33
2.2.1.2 Body-Centered Cubic Structure 35
2.2.2 Crystal Systems 36
2.2.3 Defects in Crystal Structures 41
2.2.3.1 Point Defects 41
2.2.3.2 Impurities 42
2.2.4 Solid State Diffusion 43
2.2.4.1 Diffusion Mechanisms 43
2.2.4.2 Modeling of Diffusion 44
2.3 Structure of Ceramics 47
2.3.1 Crystal Structures 47
2.3.1.1 AX Crystal Structures 48
2.3.1.2 AmXp Crystal Structures 50
2.3.1.3 Carbon-Based Materials 51
2.3.2 Defects in Crystal Structures 52
2.3.2.1 Point Defects 52
2.3.2.2 Impurities 53
2.4 Structure of Polymers 54
2.4.1 General Structure 54
2.4.1.1 Repeat Units 54
2.4.1.2 Molecular Weight Determination 56
2.4.1.3 Mer Configuration 60
2.4.1.4 Polymer Structure 62
2.4.2 Polymer Synthesis 64
2.4.2.1 Addition Polymerization 64
2.4.2.2 Condensation Polymerization 65
2.4.2.3 Polymer Production Via Genetic Engineering 65
2.4.3 Copolymers 66
2.4.4 Methods of Polymerization 67
2.4.5 Crystal Structures and Defects 69
2.4.5.1 Crystal Structures 69
2.4.5.2 Point Defects and Impurities 69
2.5 Techniques:Introduction to Material Characterization 69
2.5.1 X-Ray Diffraction 71
2.5.1.1 Basic Principles 71
2.5.1.2 Instrumentation 73
2.5.1.3 Information Provided 75
2.5.2 Ultraviolet and Visible Light Spectroscopy(UV-VIS) 75
2.5.2.1 Basic Principles 75
2.5.2.2 Instrumentation 76
2.5.2.3 Information Provided 78
2.5.3 Infrared Spectroscopy(IR) 79
2.5.3.1 Basic Principles 79
2.5.3.2 Instrumentation 80
2.5.3.3 Information Provided 81
2.5.4 Nuclear Magnetic Resonance Spectroscopy(NMR) 82
2.5.4.1 Basic Principles 82
2.5.4.2 Instrumentation 86
2.5.4.3 Information Provided 88
2.5.5 Mass Spectrometry 88
2.5.5.1 Basic Principles 88
2.5.5.2 Instrumentation 88
2.5.5.3 Information Provided 90
2.5.6 High-Performance Liquid Chromatography(HPLC):Size-Exclusion Chromatography 91
2.5.6.1 Basic Principles 91
2.5.6.2 Instrumentation 92
2.5.6.3 Information Provided 93
Summary 95
Problems 96
References 99
Additional Reading 100
3 Physical Properties of Biomaterials 101
3.1 Introduction:From Atomic Groupings to Bulk Materials 101
3.2 Crystallinity and Linear Defects 102
3.2.1 Dislocations 102
3.2.1.1 Edge Dislocations 102
3.2.1.2 Screw and Mixed Dislocations 103
3.2.1.3 Characteristics of Dislocations 105
3.2.2 Deformation 106
3.3 Crystallinity and Planar Defects 108
3.3.1 External Surface 108
3.3.2 Grain Boundaries 109
3.4 Crystallinity and Volume Defects 111
3.5 Crystallinity and Polymeric Materials 112
3.5.1 Percent Crystallinity 112
3.5.2 Chain-Folded Model of Crystallinity 114
3.5.3 Defects in Polymer Crystals 116
3.5.3.1 Linear Defects 116
3.5.3.2 Planar and Volume Defects 117
3.6 Thermal Transitions of Crystalline and Non-Crystalline Materials 117
3.6.1 Viscous Flow 117
3.6.2 Thermal Transitions 117
3.6.2.1 Metals and Crystalline Ceramics 117
3.6.2.2 Amorphous Ceramics(Glasses) 118
3.6.2.3 Polymers 118
3.7 Techniques:Introduction to Thermal Analysis 123
3.7.1 Differential Scanning Calorimetry 123
3.7.1.1 Basic Principles 123
3.7.1.2 Instrumentation 123
3.7.1.3 Information Provided 125
Summary 127
Problems 128
References 129
Additional Reading 130
4 Mechanical Properties of Biomaterials 131
4.1 Introduction:Modes of Mechanical Testing 131
4.2 Mechanical Testing Methods,Results and Calculations 132
4.2.1 Tensile and Shear Properties 133
4.2.1.1 Calculations for Tensile and Shear Tests 133
4.2.1.2 Stress-Strain Curves and Elastic Deformation 135
4.2.1.3 Molecular Causes of Elastic Deformation 137
4.2.1.4 Stress-Strain Curves and Plastic Deformation 137
4.2.1.5 Molecular Causes of Plastic Deformation 144
4.2.1.6 Causes of Plastic Deformation—Metals and Crystalline Ceramics 144
4.2.1.7 Causes of Plastic Deformation—Amorphous Polymers and Ceramics(Glasses) 146
4.2.1.8 Causes of Plastic Deformation—Polymers(General) 147
4.2.1.9 Causes of Plastic Deformation—Semi-Crystalline Polymers and Elastomers 148
4.2.2 Bending Properties 151
4.2.3 Time-Dependent Properties 153
4.2.3.1 Creep 153
4.2.3.2 Molecular Causes of Creep—Metals 154
4.2.3.3 Molecular Causes of Creep—Ceramics 155
4.2.3.4 Molecular Causes of Creep—Polymers 156
4.2.3.5 Stress Relaxation and its Causes 156
4.2.3.6 Mathematical Models of Viscoelastic Behavior 157
4.2.3.7 Viscoelastic Behavior—Maxwell Model 158
4.2.3.8 Viscoelastic Behavior—Voigt Model 159
4.2.4 Influence of Porosity and Degradation on Mechanical Properties 162
4.3 Fracture and Failure 163
4.3.1 Ductile and Brittle Fracture 163
4.3.2 Polymer Crazing 164
4.3.3 Stress Concentrators 165
4.4 Fatigue and Fatigue Testing 167
4.4.1 Fatigue 167
4.4.2 Fatigue Testing 167
4.4.3 Factors that Affect Fatigue Life 169
4.5 Methods to Improve Mechanical Properties 169
4.6 Techniques:Introduction to Mechanical Analysis 171
4.6.1 Mechanical Testing 171
4.6.1.1 Basic Principles 171
4.6.1.2 Instrumentation 171
4.6.1.3 Information Provided 172
Summary 172
Problems 174
References 176
Additional Reading 176
5 Biomaterial Degradation 177
5.1 Introduction:Degradation in the Biological Environment 177
5.2 Corrosion/Degradation of Metals and Ceramics 178
5.2.1 Fundamentals of Corrosion 178
5.2.1.1 Oxidation-Reduction Reactions 178
5.2.1.2 Half-Cell Potentials 180
5.2.1.3 Nernst Equation 181
5.2.1.4 Galvanic Corrosion 184
5.2.2 Pourbaix Diagrams and Passivation 184
5.2.3 Contribution of Processing Parameters 185
5.2.3.1 Crevice Corrosion 186
5.2.3.2 Pitting Corrosion 187
5.2.3.3 Intergranular Corrosion 187
5.2.4 Contribution of the Mechanical Environment 187
5.2.4.1 Stress and Galvanic Corrosion 188
5.2.4.2 Stress Corrosion Cracking 188
5.2.4.3 Fatigue Corrosion 188
5.2.4.4 Fretting Corrosion 189
5.2.5 Contribution of the Biological Environment 189
5.2.6 Means of Corrosion Control 189
5.2.7 Ceramic Degradation 190
5.3 Degradation of Polymers 190
5.3.1 Primary Means of Polymer Degradation 190
5.3.2 Chain Scission by Hydrolysis 191
5.3.3 Chain Scission by Oxidation 191
5.3.4 Other Means of Degradation 194
5.3.4.1 Environmental Stress Cracking 194
5.3.4.2 Enzyme-Catalyzed Degradation 194
5.3.5 Effects of Porosity 195
5.4 Biodegradable Materials 195
5.4.1 Biodegradable Ceramics 195
5.4.1.1 Erosion Mechanisms 196
5.4.1.2 Factors that Influence Degradation Rate 196
5.4.2 Biodegradable Polymers 196
5.4.2.1 Introduction to Biodegradable Polymers and Definitions 196
5.4.2.2 Degradation Mechanisms 198
5.4.2.3 Factors that Influence Degradation Rate 198
5.5 Techniques:Assays for Extent of Degradation 199
Summary 200
Problems 201
References 203
Additional Reading 204
6 Biomaterial Processing 205
6.1 Introduction:Importance of Biomaterials Processing 205
6.2 Processing to Improve Bulk Properties 205
6.2.1 Metals 206
6.2.1.1 Alloying 206
6.2.1.2 Strain Hardening 207
6.2.1.3 Grain Size Refinement 207
6.2.1.4 Annealing 207
6.2.1.5 Precipitation Hardening 209
6.2.2 Ceramics 209
6.2.3 Polymers 209
6.3 Processing to Form Desired Shapes 210
6.4 Processing of Metals 210
6.4.1 Forming Operations 210
6.4.1.1 Forging Metals 211
6.4.1.2 Rolling Metals 211
6.4.1.3 Extrusion of Metals 211
6.4.1.4 Drawing Metals 211
6.4.2 Casting Metals 212
6.4.2.1 Sand Casting of Metals 212
6.4.2.2 Investment Casting of Metals 212
6.4.3 Powder Processing of Metals 212
6.4.4 Rapid Manufacturing of Metals 214
6.4.5 Welding Metals 214
6.4.6 Machining of Metals 214
6.5 Processing of Ceramics 215
6.5.1 Glass Forming Techniques 215
6.5.2 Casting and Firing of Ceramics 216
6.5.2.1 Casting Ceramics 216
6.5.2.2 Firing Ceramics 216
6.5.3 Powder Processing of Ceramics 217
6.5.4 Rapid Manufacturing of Ceramics 217
6.6 Processing of Polymers 218
6.6.1 Thermoplasts vs.Thermosets 218
6.6.2 Forming Polymers 219
6.6.2.1 Extrusion of Polymers 219
6.6.2.2 Fiber Spinning of Polymers 219
6.6.3 Casting Polymers 221
6.6.3.1 Compression Molding of Polymers 221
6.6.3.2 Injection Molding of Polymers 221
6.6.3.3 Blow Molding of Polymers 221
6.6.4 Rapid Manufacturing of Polymers 222
6.7 Processing to Improve Biocompatibility 223
6.7.1 Sterilization 223
6.7.1.1 Steam Sterilization 223
6.7.1.2 Ethylene Oxide Sterilization 223
6.7.1.3 Radiation Sterilization 224
6.7.2 Fixation of Natural Materials 224
Summary 225
Problems 226
References 226
Additional Reading 227
7 Surface Properties of Biomaterials 228
7.1 Introduction:Concepts in Surface Chemistry and Biology 228
7.1.1 Protein Adsorption and Biocompatibility 229
7.1.2 Surface Properties Governing Protein Adsorption 229
7.2 Physicochemical Surface Modification Techniques 231
7.2.1 Introduction to Surface Modification Techniques 231
7.2.2 Physicochemical Surface Coatings:Covalent Surface Coatings 231
7.2.2.1 Plasma Treatment 232
7.2.2.2 Chemical Vapor Deposition 234
7.2.2.3 Physical Vapor Deposition 235
7.2.2.4 Radiation Grafting/Photografting 235
7.2.2.5 Self-Assembled Monolayers 236
7.2.3 Physicochemical Surface Coatings:Non-Covalent Surface Coatings 238
7.2.3.1 Solution Coatings 238
7.2.3.2 Langmuir-Blodgett Films 238
7.2.3.3 Surface-Modifying Additives 240
7.2.4 Physicochemical Surface Modification Methods with No Overcoat 241
7.2.4.1 Ion Beam Implantation 241
7.2.4.2 Plasma Treatment 242
7.2.4.3 Conversion Coatings 242
7.2.4.4 Bioactive Glasses 242
7.2.5 Laser Methods for Surface Modification 243
7.3 Biological Surface Modification Techniques 243
7.3.1 Covalent Biological Coatings 244
7.3.2 Non-Covalent Biological Coatings 246
7.3.3 Immobilized Enzymes 246
7.4 Surface Properties and Degradation 247
7.5 Patterning Techniques for Surfaces 247
7.6 Techniques:Introduction to Surface Characterization 249
7.6.1 Contact Angle Analysis 249
7.6.1.1 Basic Principles 249
7.6.1.2 Instrumentation 252
7.6.1.3 Information Provided 253
7.6.2 Light Microscopy 253
7.6.2.1 Basic Principles 253
7.6.2.2 Instrumentation 253
7.6.2.3 Information Provided 255
7.6.3 Electron Spectroscopy for Chemical Analysis(ESCA)or X-ray Photoelectron Spectroscopy(XPS) 256
7.6.3.1 Basic Principles 256
7.6.3.2 Instrumentation 257
7.6.3.3 Information Provided 258
7.6.4 Attenuated Total Internal Reflectance Fourier Transform—Infrared Spectroscopy(ATR-FTIR) 258
7.6.4.1 Basic Principles 258
7.6.4.2 Instrumentation 260
7.6.4.3 Information Provided 261
7.6.5 Secondary Ion Mass Spectrometry(SIMS) 262
7.6.5.1 Basic Principles 262
7.6.5.2 Instrumentation 262
7.6.5.3 Information Provided 262
7.6.6 Electron Microscopy:Transmission Electron Microscopy(TEM)and Scanning Electron Microscopy(SEM) 262
7.6.6.1 Basic Principles 262
7.6.6.2 Instrumentation 265
7.6.6.3 Information Provided 268
7.6.7 Scanning Probe Microscopy(SPM):Atomic Force Microscopy(AFM) 268
7.6.7.1 Basic Principles 268
7.6.7.2 Instrumentation 268
7.6.7.3 Information Provided 269
Summary 272
Problems 273
References 276
Additional Reading 277
8 Protein Interactions with Biomaterials 279
8.1 Introduction:Thermodynamics of Protein Adsorption 279
8.1.1 Gibbs Free Energy and Protein Adsorption 280
8.1.2 System Properties Governing Protein Adsorption 281
8.2 Protein Structure 284
8.2.1 Amino Acid Chemistry 284
8.2.2 Primary Structure 286
8.2.3 Secondary Structure 287
8.2.4 Tertiary Structure 291
8.2.5 Quaternary Structure 292
8.3 Protein Transport and Adsorption Kinetics 293
8.3.1 Transport to the Surface 293
8.3.2 Adsorption Kinetics 295
8.4 Reversibility of Protein Adsorption 296
8.4.1 Reversible and Irreversible Binding 296
8.4.2 Desorption and Exchange 297
8.5 Techniques:Assays for Protein Type and Amount 301
8.5.1 High-Performance Liquid Chromatography(HPLC):Affinity Chromatography 301
8.5.1.1 Basic Principles 301
8.5.1.2 Instrumentation 302
8.5.1.3 Information Provided 302
8.5.2 Colorimetric Assays 306
8.5.2.1 Basic Principles and Instrumentation 306
8.5.3 Fluorescent Assays 307
8.5.3.1 Basic Principles 307
8.5.3.2 Instrumentation 307
8.5.3.3 Information Provided 308
8.5.4 Enzyme-linked Immunosorbent Assay(ELISA) 308
8.5.4.1 Basic Principles and Procedures 308
8.5.5 Western Blotting 309
8.5.5.1 Basic Principles and Procedures 309
Summary 310
Problems 311
References 312
Additional Reading 313
9 Cell Interactions with Biomaterials 314
9.1 Introduction:Cell-Surface Interactions and Cellular Functions 314
9.2 Cellular Structure 315
9.2.1 Cell Membrane 315
9.2.2 Cytoskeleton 317
9.2.3 Mitochondria 318
9.2.4 Nucleus 318
9.2.4.1 Structure and Function of the Nucleus 318
9.2.4.2 Structure of DNA 318
9.2.4.3 Structure of RNA 321
9.2.5 Endoplasmic Reticulum 323
9.2.6 Vesicles 323
9.2.7 Membrane Receptors and Cell Contacts 324
9.2.7.1 Types of Cell Contacts 324
9.2.7.2 Types of Membrane Receptors and Ligands 324
9.3 Extracellular Environment 327
9.3.1 Collagen 327
9.3.2 Elastin 328
9.3.3 Proteoglycans 328
9.3.4 Glycoproteins 330
9.3.5 Other ECM Components 332
9.3.6 Matrix Remodeling 334
9.3.7 ECM Molecules as Biomaterials 335
9.4 Cell-Environment Interactions that Affect Cellular Functions 336
9.4.1 Cell Survival 336
9.4.2 Cell Proliferation 336
9.4.2.1 Cell Cycle:Interphase 337
9.4.2.2 Cell Cycle:Mitosis 337
9.4.3 Cell Differentiation 339
9.4.4 Protein Synthesis 340
9.4.4.1 Collagen Synthesis:Transcription 341
9.4.4.2 Collagen Synthesis:Translation and Post-Translational Modification 342
9.5 Models of Adhesion,Spreading and Migration 347
9.5.1 Basic Adhesion Models:DLVO Theory 347
9.5.2 DLVO Theory Limitations and Further Models 348
9.5.3 Models of Cell Spreading and Migration 349
9.5.3.1 Cell Spreading 349
9.5.3.2 Cell Migration 349
9.6 Techniques:Assays to Determine Effects of Cell-Material Interactions 353
9.6.1 Cytotoxicity Assays 354
9.6.1.1 Direct Contact Assay 354
9.6.1.2 Agar Diffusion Assay 355
9.6.1.3 Elution Assay 355
9.6.2 Adhesion/Spreading Assays 356
9.6.3 Migration Assays 357
9.6.4 DNA and RNA Assays 358
9.6.4.1 Polymerase Chain Reaction(PCR)and Reverse-Transcription Polymerase Chain Reaction(RT PCR) 358
9.6.4.2 Southern and Northern Blotting 360
9.6.5 Protein Production Assays:Immunostaining 361
Summary 362
Problems 364
References 366
Additional Reading 366
10 Biomaterial Implantation and Acute Inflammation 369
10.1 Introduction:Overview of Innate and Acquired Immunity 369
10.1.1 Characteristics of Leukocytes 371
10.1.1.1 Leukocyte Types 371
10.1.1.2 Leukocyte Formation 371
10.1.1.3 Life Span of Leukocytes 371
10.1.2 Sources of Innate Immunity 371
10.2 Clinical Signs of Inflammation and Their Causes 372
10.3 Role of Tissue Macrophages and Neutrophils 373
10.3.1 Migration of Neutrophils 373
10.3.2 Actions of Neutrophils 375
10.3.2.1 Phagocytosis 375
10.3.2.2 Respiratory Burst 375
10.3.2.3 Secretion of Chemical Mediators 375
10.4 Role of Other Leukocytes 376
10.4.1 Monocytes/Macrophages 376
10.4.2 Actions of Macrophages 377
10.4.2.1 Phagocytosis and Biomaterials 377
10.4.2.2 Secretion of Chemical Mediators 377
10.4.2.3 Role as Antigen-Presenting Cells 378
10.4.3 Other Granulocytes 378
10.5 Termination of Acute Inflammation 379
10.6 Techniques:In Vitro Assays for Inflammatory Response 380
10.6.1 Leukocyte Assays 380
10.6.2 Other Assays 382
Summary 382
Problems 383
References 384
Additional Reading 384
11 Wound Healing and the Presence of Biomaterials 385
11.1 Introduction:Formation of Granulation Tissue 385
11.2 Foreign Body Reaction 387
11.3 Fibrous Encapsulation 388
11.4 Chronic Inflammation 389
11.5 Four Types of Resolution 390
11.6 Repair vs.Regeneration:Wound Healing in Skin 391
11.6.1 Skin Repair 391
11.6.2 Skin Regeneration 392
11.7 Techniques:In Vivo Assays for Inflammatory Response 393
11.7.1 Considerations in Development of Animal Models 394
11.7.1.1 Choice of Animal 394
11.7.1.2 Choice of Implant Site 395
11.7.1.3 Length of Study 395
11.7.1.4 Biomaterial Considerations:Dose and Administration 396
11.7.1.5 Inclusion of Proper Controls 396
11.7.2 Methods of Assessment 396
11.7.2.1 Histology/Immunohistochemistry 397
11.7.2.2 Electron Microscopy 397
11.7.2.3 Biochemical Assays 398
11.7.2.4 Mechanical Testing 398
Summary 399
Problems 399
References 401
Additional Reading 401
12 Immune Response to Biomaterials 403
12.1 Introduction:Overview of Acquired Immunity 403
12.2 Antigen Presentation and Lymphocyte Maturation 404
12.2.1 Major Histocompatibility Complex(MHC)Molecules 404
12.2.1.1 MHC Class Ⅰ 404
12.2.1.2 MHC Class Ⅱ 405
12.2.1.3 MHC Molecule Variation and Tissue Typing 405
12.2.1.4 Intracellular Complexation with MHC Molecules 407
12.2.2 Maturation of Lymphocytes 408
12.2.3 Activation and Formation of Clonal Populations 408
12.3 B Cells and Antibodies 409
12.3.1 Types of B Cells 409
12.3.2 Characteristics of Antibodies 410
12.3.2.1 Structure of Antibodies 410
12.3.2.2 Classes of Antibodies 410
12.3.2.3 Mechanisms of Antibody Action 412
12.4 T Cells 412
12.4.1 Types of T Cells 412
12.4.2 Helper T Cells(Th) 413
12.4.3 Cytotoxic T Cells(Tc) 413
12.5 The Complement System 414
12.5.1 Classical Pathway 414
12.5.2 Alternative Pathway 416
12.5.3 Membrane Attack Complex 416
12.5.4 Regulation of the Complement System 417
12.5.5 Effects of the Complement System 418
12.6 Undesired Immune Responses to Biomaterials 418
12.6.1 Innate vs.Acquired Responses to Biomaterials 419
12.6.2 Hypersensitivity 419
12.6.2.1 Type Ⅰ:IgE Mediated 419
12.6.2.2 Type Ⅱ:Antibody Mediated 419
12.6.2.3 Type Ⅲ:Immune Complex Mediated 420
12.6.2.4 Type Ⅳ:T Cell Mediated 420
12.6.2.5 Hypersensitivity and the Classes of Biomaterials 421
12.7 Techniques:Assays for Immune Response 422
12.7.1 In Vitro Assays 422
12.7.2 In Vivo Assays 423
Summary 424
Problems 426
References 426
Additional Reading 426
13 Biomaterials and Thrombosis 428
13.1 Introduction:Overview of Hemostasis 428
13.2 Role of Platelets 429
13.2.1 Platelet Characteristics and Functions 429
13.2.2 Platelet Activation 429
13.2.2.1 Means of Activation 429
13.2.2.2 Sequelae of Activation 429
13.3 Coagulation Cascade 430
13.3.1 Intrinsic Pathway 431
13.3.2 Extrinsic Pathway 432
13.3.3 Common Pathway 432
13.4 Means of Limiting Clot Formation 434
13.5 Role of the Endothelium 435
13.6 Tests for Hemocompatibility 436
13.6.1 General Testing Concerns 436
13.6.2 In Vitro Assessment 437
13.6.3 In Vivo Assessment 438
Summary 439
Problems 440
References 442
Additional Reading 442
14 Infection,Tumorigenesis and Calcification of Biomaterials 444
14.1 Introduction:Overview of Other Potential Problems with Biomaterial Implantation 444
14.2 Infection 445
14.2.1 Common Pathogens and Categories of Infection 445
14.2.2 Steps to Infection 446
14.2.3 Characteristics of the Bacterial Surface,the Biomaterial Surface,and the Media 447
14.2.3.1 Bacterial Surface Properties:Gram-Positive vs.Gram-Negative Bacteria 447
14.2.3.2 Bacterial Surface Properties:Cell Capsule and Biofilm 447
14.2.3.3 Biomaterial Surface Properties 449
14.2.3.4 Media Properties 450
14.2.4 Specific and Non-Specific Interactions Involved in Bacterial Adhesion 450
14.2.5 Summary of Implant-Associated Infections 451
14.3 Techniques for Infection Experiments 452
14.3.1 Characterizing Bacterial Surfaces 452
14.3.1.1 Surface Hydrophobicity 452
14.3.1.2 Surface Charge 453
14.3.2 In Vitro and In Vivo Models of Infection 454
14.3.2.1 In Vitro Bacterial Adhesion 454
14.3.2.2 Ex Vivo and In Vivo Infection Models 454
14.4 Tumorigenesis 455
14.4.1 Definitions and Steps of Tumorigenesis 455
14.4.2 Chemical vs.Foreign Body Carcinogenesis 455
14.4.3 Timeline for Foreign Body Tumorigenesis 456
14.4.3.1 Foreign Body Tumorigenesis with Large Implants 456
14.4.3.2 Foreign Body Tumorigenesis with Small Fibers 456
14.4.4 Summary of Biomaterial-Related Tumorigenesis 457
14.5 Techniques for Tumorigenesis Experiments 458
14.5.1 In Vitro Models 458
14.5.2 In Vivo Models 458
14.6 Pathologic Calcification 459
14.6.1 Introduction to Pathologic Calcification 459
14.6.2 Mechanism of Pathologic Calcification 459
14.6.3 Summary and Techniques to Reduce Pathologic Calcification 460
14.7 Techniques for Pathologic Calcification Experiments 460
14.7.1 In Vitro Models of Calcification 460
14.7.2 In Vivo Models of Calcification 461
14.7.3 Sample Assessment 461
Summary 463
Problems 465
References 466
Additional Reading 466
Appendix Ⅰ:List of Abbreviations and Symbols 468
Index 471