Generators and Relations For Discrete GroupsPDF电子书下载
- 电子书积分:9 积分如何计算积分?
- 作 者:H.S.M.Coxeter and W.O.J.Moser
- 出 版 社:Springer-Verlag
- 出版年份:1957
- ISBN:
- 页数:155 页
1.Cyclic,Dicyclic and Metacyclic Groups 1
1.1 Generators and relations 1
1.2 Factor groups 2
1.3 Direct products 3
1.4 Automorphisms 5
1.5 Some well-known finite groups 6
1.6 Dicyclic groups 7
1.7 The quaternion groups 8
1.8 Cyclic extensions of cyclic groups 8
1.9 Groups of order less than 32 11
2.Systematic Enumeration of Cosets 12
2.1 Finding an abstract definition for a finite group 12
2.2 Examples 14
2.3 The corresponding permutations 17
2.4 Finding whether a given subgroup is normal 17
2.5 How an abstract definition determines a group 17
3.Graphs,Maps and Cayley Diagrams 18
3.1 Graphs 19
3.2 Maps 19
3.3 Cayley diagrams 21
3.4 Planar diagrams 23
3.5 Unbounded surfaces 24
3.6 Non-planar diagrams 28
3.7 SCHREIER'S coset diagrams 31
4.Abstract Crystallography 33
4.1 The cyclic and dihedral groups 33
4.2 The crystgallographic and non-crystallographic point groups 33
4.3 Groups generated by reflections 35
4.4 Subgroups of the reflection groups 38
4.5 The seventeen two-dimensional space groups 40
4.6 Subgroup relationships among the seventeen groups 51
5.Hyperbolic Tessellations and Fundamental Groups 52
5.1 Regular tessellations 52
5.2 The Petrie polygon 54
5.3 DYCK's groups 54
5.4 The fundamental group for a non-orientable surface,obtained as a group generated by glide-reflections 56
5.5 The fundamental region for an orientable surface,obtained as a group of translations 58
6.The Symmetric,Alternating,and other Special Groups 61
6.1 ARTIN's braid group 62
6.2 The symmetric group 63
6.3 The alternating group 66
6.4 The polyhedral groups 67
6.5 The binary polyhedral groups 68
6.6 MILLER's generalization of the polyhedral groups 71
6.7 A new generalization 76
6.8 BURNSIDE's problem 80
7.Modular and Linear Fractional Groups 83
7.1 Lattices and modular groups 83
7.2 Defining relations when n = 2 85
7.3 Defining relations when n ? 3 88
7.4 Linear fractiona groups 92
7.5 The groups LF (2,p) 93
7.6 The groups LF (2,2m) 96
7.7 The Hessian group and LF (3,3) 97
7.8 The first Mathieu group 98
8.Regular Maps 100
8.1 Automorphisms 100
8.2 Universal covering 102
8.3 Maps of type {4,4} on a torus 102
8.4 Maps of type {3,6} or {6,3} on a torus 106
8.5 Maps having specified holes 108
8.6 Maps having specified Petrie polygons 110
8.7 Maps having two faces 113
8.8 Maps on a two-sheeted Riemann surface 115
8.9 Symmetrical graphs 116
9.Groups Generated by Reflections 117
9.1 Reducible and irreducible grops 117
9.2 The graphical notation 117
9.3 Finite groups 118
9.4 A brief description of the individual groups 122
9.5 Commutator subgroups 124
9.6 Central quotient groups 126
9.7 Exponents and invariants 129
9.8 Infinite Euclidean groups 131
9.9 Infinite non-Euclidean groups 132
Tables 1-12 134
Bibliography 144
Index 152
- 《治理、政治与国家=GOVERNANCE》POLITICS AND THE STATE
- 《暗黑之门 历任首相主导下的英国情报史话=SPIES》SECRET INTELLIGENCE AND BRITISH PRIME MINISTERS
- 《石像、神庙与失落的文明:改写世界文明史的玛雅发现之旅=THE EXTRAORDINARY JOUMEY OF JOHN L.STEPHENS AND FREDERICK CSTHERW》AND THE DISCOVERY OF THE LOST CIVILIZATION OF THE MAYA
- 《中国影视娱乐合同范本与风险防范=Chinas Film》Television and Entertainment Industry Contract Model and Risk Prevention
- 《政治观念史稿·卷一 希腊化、罗马和早期基督教=HISTORY OF POLITICAL IDEAS(VOLUMR 1) HELLENISM》ROME AND EARLY CHRISTIANITY
- 《PIANO ADVENTURES THE BASIC PIANO METHOD LEVEL 3B LESSON BOOK 2ND EDITION》NANCY AND RANDALL FABER 2015
- 《MOONSHOTS IN EDUCATION LAUNCHING BLENDED LEARNING IN THE COASSROOM》ESTHER WOJCICKI AND LANCE LZUMI 2015
- 《CHINAS NEW URBANIZATION DEVELOPMENTAL PATHS》 BLUEPRINTS AND PATTERNS SCIE
- 《DREAM FOR SOLO PERCUSIONIST (CROTALES》 VIBRAPHONE AND JOHN
- 《美国教育法与判例》秦梦群著=American public school law and court cases 2004