Fundamentals of aerodynamicsPDF电子书下载
- 电子书积分:28 积分如何计算积分?
- 作 者:John David Anderson
- 出 版 社:McGraw-Hill
- 出版年份:2011
- ISBN:0073398101
- 页数:1106 页
PART 1Fundamental Principle 1
Chapter 1Aerodynamics:Some Introductory Thoughts 3
1.1 Importance of Aerodynamics:Historical Examples 5
1.2 Aerodynamics:Classification and Practical Objectives 11
1.3 Road Map for This Chapter 15
1.4 Some Fundamental Aerodynamic Variables 15
1.4.1 Units 18
1.5 Aerodynamic Forces and Moments 19
1.6 Center of Pressure 32
1.7 Dimensional Analysis:The Buckingham Pi Theorem 34
1.8 Flow Similarity 41
1.9 Fluid Statics:Buoyancy Force 52
1.10 Types of Flow 62
1.10.1 Continuum Versus Free Molecule Flow 62
1.10.2 Inviscid Versus Viscous Flow 62
1.10.3Incompressible Versus CompressibleFlows 64
1.10.4 Mach Number Regimes 64
1.11 Viscous Flow:Introduction to Boundary Layers 68
1.12 Applied Aerodynamics:The Aerodynamic Coefficients—Their Magnitudes and Variations 75
1.13 Historical Note:The Illusive Center of Pressure 89
1.14 Historical Note:Aerodynamic Coefficients 93
1.15 Summary 97
1.16 Problems 98
Chapter 2 Aerodynamics:Some Fundamental Principles and Equations 103
2.1 Introduction and Road Map 104
2.2 Review of Vector Relations 105
2.2.1 Some Vector Algebra 106
2.2.2 Typical Orthogonal Coordinate Systems 107
2.2.3 Scalar and Vector Fields 110
2.2.4 Scalar and Vector Products 110
2.2.5 Gradient of a Scalar Field 111
2.2.6 Divergence of a Vector Field 113
2.2.7 Curl of a Vector Field 114
2.2.8 Line Integrals 114
2.2.9 Surface Integrals 115
2.2.10 Volume Integrals 116
2.2.11 Relations Between Line,Surface,and Volume Integrals 117
2.2.12 Summary 117
2.3 Models of the Fluid:Control Volumes and Fluid Elements 117
2.3.1 Finite Control Volume Approach 118
2.3.2 Infinitesimal Fluid Element Approach 119
2.3.3 Molecular Approach 119
2.3.4 Physical Meaning of the Divergence of Velocity 120
2.3.5 Specification of the Flow Field 121
2.4 Continuity Equation 125
2.5 Momentum Equation 130
2.6 An Application of the Momentum Equation:Drag of a Two-Dimensional Body 135
2.6.1 Comment 144
2.7 Energy Equation 144
2.8 Interim Summary 149
2.9 Substantial Derivative 150
2.10 Fundamental Equations in Terms of the Substantial Derivative 156
2.11 Pathlines,Streamlines,and Streaklines of a Flow 158
2.12 Angular Velocity,Vorticity,and Strain 163
2.13 Circulation 174
2.14 Stream Function 177
2.15 Velocity Potential 181
2.16 Relationship Between the Stream Function and Velocity Potential 184
2.17 How Do We Solve the Equations? 185
2.17.1 Theoretical (Analytical) Solutions 185
2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD) 187
2.17.3 The Bigger Picture 194
2.18 Summary 194
2.19 Problems 198
PART2 Inviscid,Incompressible Flow 201
Chapter 3 Fundamentals of Inviscid,Incompressible Flow 203
3.1 Introduction and Road Map 204
3.2 Bernoulli’s Equation 207
3.3 Incompressible Flow in a Duct:The Venturi and Low-Speed Wind Tunnel 211
3.4 Pitot Tube:Measurement of Airspeed 224
3.5 Pressure Coefficient 233
3.6 Condition on Velocity for Incompressible Flow 235
3.7 Governing Equation for Irrotational,Incompressible Flow:Laplace’s Equation 236
3.7.1 Infinity Boundary Conditions 239
3.7.2 Wall Boundary Conditions 239
3.8 Interim Summary 240
3.9 Uniform Flow:Our First Elementary Flow 241
3.10 Source Flow:Our Second Elementary Flow 243
3.11 Combination of a Uniform Flow with a Source and Sink 247
3.12 Doublet Flow:Our Third Elementary Flow 251
3.13 Nonlifting Flow over a Circular Cylinder 253
3.14 Vortex Flow:Our Fourth Elementary Flow 262
3.15 Lifting Flow over a Cylinder 266
3.16 The Kutta-Joukowski Theorem and the Generation of Lift 280
3.17 Nonlifting Flows over Arbitrary Bodies:The Numerical Source Panel Method 282
3.18 Applied Aerodynamics:The Flow over a Circular Cylinder—The Real Case 292
3.19 Historical Note:Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics 300
3.20 Historical Note:d’Alembert and His Paradox 305
3.21 Summary 306
3.22 Problems 309
Chapter 4 Incompressible Flow over Airfoils 313
4.1 Introduction 315
4.2 Airfoil Nomenclature 318
4.3 Airfoil Characteristics 320
4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils:The Vortex Sheet 325
4.5 The Kutta Condition 330
4.5.1 Without Friction Could We Have Lift? 334
4.6 Kelvin’s Circulation Theorem and the Starting Vortex 334
4.7 Classical Thin Airfoil Theory:The Symmetric Airfoil 338
4.8 The Cambered Airfoil 348
4.9 The Aerodynamic Center:Additional Considerations 357
4.10 Lifting Flows over Arbitrary Bodies:The Vortex Panel Numerical Method 361
4.11 Modern Low-Speed Airfoils 367
4.12 Viscous Flow:Airfoil Drag 371
4.12.1 Estimating Skin-Friction Drag:Laminar Flow 372
4.12.2 Estimating Skin-Friction Drag:Turbulent Flow 374
4.12.3 Transition 376
4.12.4 Flow Separation 381
4.12.5 Comment 386
4.13 Applied Aerodynamics:The Flow over an Airfoil—The Real Case 387
4.14 Historical Note:Early Airplane Design and the Role of Airfoil Thickness 398
4.15 Historical Note:Kutta,Joukowski,and the Circulation Theoryof Lift 403
4.16 Summary 405
4.17 Problems 407
Chapter 5 Incompressible Flow over Finite Wings 411
5.1 Introduction:Downwash and Induced Drag 415
5.2 The Vortex Filament,the Biot-Savart Law,and Helmholtz’s Theorems 420
5.3 Prandtl’s Classical Lifting-Line Theory 424
5.3.1 Elliptical Lift Distribution 430
5.3.2 General Lift Distribution 435
5.3.3 Effect of Aspect Ratio 438
5.3.4 Physical Significance 444
5.4 A Numerical Nonlinear Lifting-Line Method 453
5.5 The Lifting-Surface Theory and the Vortex Lattice Numerical Method 457
5.6 Applied Aerodynamics:The Delta Wing 464
5.7 Historical Note:Lanchester and Prandtl—The Early Development of Finite-Wing Theory 476
5.8 Historical Note:Prandtl—The Man 480
5.9 Summary 483
5.10 Problems 484
Chapter 6 Three-Dimensional Incompressible Flow 487
6.1 Introduction 487
6.2 Three-Dimensional Source 488
6.3 Three-Dimensional Doublet 490
6.4 Flow over A Sphere 492
6.4.1 Comment on the Three-Dimensional Relieving Effect 494
6.5 General Three-Dimensional Flows:Panel Techniques 495
6.6 Applied Aerodynamics:The Flow over a Sphere—The Real Case 497
6.7 Applied Aerodynamics:Airplane Lift and Drag 500
6.7.1 Airplane Lift 500
6.7.2 Airplane Drag 502
6.7.3 Application of Computational Fluid Dynamics for the Calculation of Lift and Drag 507
6.8 Summary 511
6.9 Problems 512
PART 3 Inviscid,Compressible Flow 513
Chapter 7 Compressible Flow:Some Preliminary Aspects 515
7.1 Introduction 516
7.2 A Brief Review of Thermodynamics 518
7.2.1 Perfect Gas 518
7.2.2 Internal Energy and Enthalpy 518
7.2.3 First Law of Thermodynamics 523
7.2.4 Entropy and the Second Law of Thermodynamics 524
7.2.5 Isentropic Relations 526
7.3 Definition of Compressibility 530
7.4 Governing Equations for Inviscid,Compressible Flow 531
7.5 Definition of Total (Stagnation)Conditions 533
7.6 Some Aspects of Supersonic Flow:Shock Waves 540
7.7 Summary 544
7.8 Problems 546
Chapter 8 Normal Shock Waves and Related Topics 549
8.1 Introduction 550
8.2 The Basic Normal Shock Equations 551
8.3 Speed of Sound 555
8.3.1 Comments 563
8.4 Special Forms of the Energy Equation 564
8.5 When Is A Flow Compressible? 572
8.6 Calculation of Normal Shock-Wave Properties 575
8.6.1 Comment on the Use of Tables to Solve Compressible Flow Problems 590
8.7 Measurement of Velocity in a Compressible Flow 591
8.7.1 Subsonic Compressible Flow 591
8.7.2 Supersonic Flow 592
8.8 Summary 596
8.9 Problems 599
Chapter 9 Oblique Shock and Expansion Waves 601
9.1 Introduction 602
9.2 Oblique Shock Relations 608
9.3 Supersonic Flow over Wedges and Cones 622
9.3.1 A Comment on Supersonic Lift and Drag Coefficients 625
9.4 Shock Interactions and Reflections 626
9.5 Detached Shock Wave in Front of a Blunt Body 632
9.5.1 Comment on the Flow Field behind a Curved Shock Wave:Entropy Gradients and Vorticity 636
9.6 Prandtl-Meyer Expansion Waves 636
9.7 Shock-Expansion Theory:Applications to Supersonic Airfoils 648
9.8 A Comment on Lift and Drag Coefficients 652
9.9 The X-15 and Its Wedge Tail 652
9.10 Viscous Flow:Shock-Wave/Boundary-Layer Interaction 657
9.11 Historical Note:Ernst Mach—A Biographical Sketch 659
9.12 Summary 662
9.13 Problems 663
Chapter 10 Compressible Flow through Nozzles,Diffusers,and Wind Tunnels 669
10.1 Introduction 670
10.2 Governing Equations for Quasi-One-Dimensional Flow 672
10.3 Nozzle Flows 681
10.3.1 More on Mass Flow 695
10.4 Diffusers 696
10.5 Supersonic Wind Tunnels 698
10.6 Viscous Flow:Shock-Wave/Boundary-Layer Interaction inside nozzles 704
10.7 Summary 706
10.8 Problems 707
Chapter 11 Subsonic Compressible Flow over Airfoils:Linear Theory 711
11.1 Introduction 712
11.2 The Velocity Potential Equation 714
11.3 The Linearized Velocity Potential Equation 717
11.4 Prandtl-Glauert Compressibility Correction 722
11.5 Improved Compressibility Corrections 727
11.6 Critical Mach Number 728
11.6.1 A Comment on the Location of Minimum Pressure (Maximum Velocity) 737
11.7 Drag-Divergence Mach Number:The Sound Barrier 737
11.8 The Area Rule 745
11.9 The Supercritical Airfoil 747
11.10 CFD Applications:Transonic Airfoils and Wings 749
11.11 Applied Aerodynamics:The Blended Wing Body 754
11.12 Historical Note:High-Speed Airfoils—Early Research and Development 760
11.13 Historical Note:The Origin of The Swept-Wing Concept 764
11.14 Historical Note:Richard T. Whitcomb—Architect of the Area Rule and the Supercritical Wing 773
11.15 Summary 774
11.16 Problems 776
Chapter 12 Linearized Supersonic Flow 779
12.1 Introduction 780
12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula 780
12.3 Application to Supersonic Airfoils 784
12.4 Viscous Flow:Supersonic Airfoil Drag 790
12.5 Summary 793
12.6 Problems 794
Chapter 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow 797
13.1 Introduction:Philosophy of Computational Fluid Dynamics 798
13.2 Elements of the Method of Characteristics 800
13.2.1 Internal Points 806
13.2.2 Wall Points 807
13.3 Supersonic Nozzle Design 808
13.4 Elements of Finite-Difference Methods 811
13.4.1 Predictor Step 817
13.4.2 Corrector Step 817
13.5 The Time-Dependent Technique:Application to Supersonic Blunt Bodies 818
13.5.1 Predictor Step 822
13.5.2 Corrector Step 822
13.6 Flow over Cones 826
13.6.1 Physical Aspects of Conical Flow 827
13.6.2 Quantitative Formulation 828
13.6.3 Numerical Procedure 833
13.6.4 Physical Aspects of Supersonic Flow Over Cones 834
13.7 Summary 837
13.8 Problem 838
Chapter 14 Elements of Hypersonic Flow 839
14.1 Introduction 840
14.2 Qualitative Aspects of Hypersonic Flow 841
14.3 Newtonian Theory 845
14.4 The Lift and Drag of Wings at Hypersonic Speeds:Newtonian Results for a Flat Plate at Angle of Attack 849
14.4.1 Accuracy Considerations 856
14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory 860
14.6 Mach Number Independence 864
14.7 Hypersonics and Computational Fluid Dynamics 866
14.8 Hypersonic Viscous Flow:Aerodynamic Heating 869
14.8.1 Aerodynamic Heating and Hypersonic Flow—the Connection 869
14.8.2 Blunt versus Slender Bodies in Hypersonic Flow 871
14.8.3 Aerodynamic Heating to a Blunt Body 874
14.9 Applied Hypersonic Aerodynamics:Hypersonic Waveriders 876
14.9.1 Viscous-Optimized Waveriders 882
14.10 Summary 890
14.11 Problems 890
PART4 Viscous Flow 891
Chapter 15 Introduction to the Fundamental Principles and Equations of Viscous Flow 893
15.1 Introduction 894
15.2 Qualitative Aspects of Viscous Flow 895
15.3 Viscosity and Thermal Conduction 903
15.4 The Navier-Stokes Equations 908
15.5 The Viscous Flow Energy Equation 912
15.6 Similarity Parameters 916
15.7 Solutions of Viscous Flows:A Preliminary Discussion 920
15.8 Summary 923
15.9 Problems 925
Chapter 16 A Special Case:Couette Flow 927
16.1 Introduction 927
16.2 Couette Flow:General Discussion 928
16.3 Incompressible (Constant Property) Couette Flow 932
16.3.1 Negligible Viscous Dissipation 938
16.3.2 Equal Wall Temperatures 939
16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature) 941
16.3.4 Recovery Factor 944
16.3.5 Reynolds Analogy 945
16.3.6 Interim Summary 946
16.4 Compressible Couette Flow 948
16.4.1 Shooting Method 950
16.4.2 Time-Dependent Finite-Difference Method 952
16.4.3 Results for Compressible Couette Flow 956
16.4.4 Some Analytical Considerations 958
16.5 Summary 963
Chapter 17 Introduction to Boundary Layers 965
17.1 Introduction 966
17.2 Boundary-Layer Properties 968
17.3 The Boundary-Layer Equations 974
17.4 How Do We Solve the Boundary-Layer Equations? 977
17.5 Summary 979
Chapter 18 Laminar Boundary Layers 981
18.1 Introduction 981
18.2 Incompressible Flow over a Flat Plate:The Blasius Solution 982
18.3 Compressible Flow over a Flat Plate 989
18.3.1 A Comment on Drag Variation with Velocity 1000
18.4 The Reference Temperature Method 1001
18.4.1 Recent Advances:The Meador-Smart Reference Temperature Method 1004
18.5 Stagnation Point Aerodynamic Heating 1005
18.6 Boundary Layers over Arbitrary Bodies:Finite-Difference Solution 1011
18.6.1 Finite-Difference Method 1012
18.7 Summary 1017
18.8 Problems 1018
Chapter 19 Turbulent Boundary Layers 1019
19.1 Introduction 1020
19.2 Results for Turbulent Boundary Layers on a Flat Plate 1020
19.2.1 Reference Temperature Method for Turbulent Flow 1022
19.2.2 The Meador-Smart Reference Temperature Method for Turbulent Flow 1024
19.2.3 Prediction ofAirfoil Drag 1025
19.3 Turbulence Modeling 1025
19.3.1 The Baldwin-Lomax Model 1026
19.4 Final Comments 1028
19.5 Summary 1029
19.6 Problems 1030
Chapter 20 Navier-Stokes Solutions:Some Examples 1031
20.1 Introduction 1032
20.2 The Approach 1032
20.3 Examples of Some Solutions 1033
20.3.1 Flow over a Rearward-Facing Step 1033
20.3.2 Flow over an Airfoil 1033
20.3.3 Flow over a Complete Airplane 1036
20.3.4 Shock-Wave/Boundary-Layer Interaction 1037
20.3.5 Flow over an Airfoil with a Protuberance 1038
20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag 1040
20.5 Summary 1045
Appendix A Isentropic Flow Properties 1047
Appendix B Normal Shock Properties 1053
Appendix C Prandtl-Meyer Function and Mach Angle 1057
Appendix D Standard Atmosphere,SI Units 1061
Appendix E Standard Atmosphere,English Engineering Units 1071
Bibliography 1079
Index 1085
- 《数据失控》(美)约翰·切尼-利波尔德(John Cheney-Lippold)著 2019
- 《地球简史》(英)戴维·贝克(David Baker) 2020
- 《第三帝国的兴亡》(英)克里斯·毕晓普(Chris Bishop),(英)戴维·乔丹(David Jordan)著 2019
- 《图解轻武器史 剑、矛和锤》(美)大卫·苏德(David Soud)著;刘恒沙译 2017
- 《现代环境主义导论》(英)戴维·佩珀(David Pepper)著 2020
- 《深奥的简洁》(英)约翰·格里宾(John Gribbin)著 2020
- 《中国经学史》(美)韩大伟(David B. Honey)著 2019
- 《陀思妥耶夫斯基》(美)苏珊·李·安德森(Susan Lee Anderson)著 2019
- 《火星生命 前往须知》(美)戴维·温特劳布(DAVID A. WEINTRAUB)著;傅承启译 2019
- 《铸造手册大全 金属铸造工艺、冶金技术和设计 第6册 熔炼·造型·铸造·凝固》John Campbell主编 2018