当前位置:首页 > 外文
Fundamentals of aerodynamics
Fundamentals of aerodynamics

Fundamentals of aerodynamicsPDF电子书下载

外文

  • 电子书积分:28 积分如何计算积分?
  • 作 者:John David Anderson
  • 出 版 社:McGraw-Hill
  • 出版年份:2011
  • ISBN:0073398101
  • 页数:1106 页
图书介绍:
《Fundamentals of aerodynamics》目录
标签:

PART 1Fundamental Principle 1

Chapter 1Aerodynamics:Some Introductory Thoughts 3

1.1 Importance of Aerodynamics:Historical Examples 5

1.2 Aerodynamics:Classification and Practical Objectives 11

1.3 Road Map for This Chapter 15

1.4 Some Fundamental Aerodynamic Variables 15

1.4.1 Units 18

1.5 Aerodynamic Forces and Moments 19

1.6 Center of Pressure 32

1.7 Dimensional Analysis:The Buckingham Pi Theorem 34

1.8 Flow Similarity 41

1.9 Fluid Statics:Buoyancy Force 52

1.10 Types of Flow 62

1.10.1 Continuum Versus Free Molecule Flow 62

1.10.2 Inviscid Versus Viscous Flow 62

1.10.3Incompressible Versus CompressibleFlows 64

1.10.4 Mach Number Regimes 64

1.11 Viscous Flow:Introduction to Boundary Layers 68

1.12 Applied Aerodynamics:The Aerodynamic Coefficients—Their Magnitudes and Variations 75

1.13 Historical Note:The Illusive Center of Pressure 89

1.14 Historical Note:Aerodynamic Coefficients 93

1.15 Summary 97

1.16 Problems 98

Chapter 2 Aerodynamics:Some Fundamental Principles and Equations 103

2.1 Introduction and Road Map 104

2.2 Review of Vector Relations 105

2.2.1 Some Vector Algebra 106

2.2.2 Typical Orthogonal Coordinate Systems 107

2.2.3 Scalar and Vector Fields 110

2.2.4 Scalar and Vector Products 110

2.2.5 Gradient of a Scalar Field 111

2.2.6 Divergence of a Vector Field 113

2.2.7 Curl of a Vector Field 114

2.2.8 Line Integrals 114

2.2.9 Surface Integrals 115

2.2.10 Volume Integrals 116

2.2.11 Relations Between Line,Surface,and Volume Integrals 117

2.2.12 Summary 117

2.3 Models of the Fluid:Control Volumes and Fluid Elements 117

2.3.1 Finite Control Volume Approach 118

2.3.2 Infinitesimal Fluid Element Approach 119

2.3.3 Molecular Approach 119

2.3.4 Physical Meaning of the Divergence of Velocity 120

2.3.5 Specification of the Flow Field 121

2.4 Continuity Equation 125

2.5 Momentum Equation 130

2.6 An Application of the Momentum Equation:Drag of a Two-Dimensional Body 135

2.6.1 Comment 144

2.7 Energy Equation 144

2.8 Interim Summary 149

2.9 Substantial Derivative 150

2.10 Fundamental Equations in Terms of the Substantial Derivative 156

2.11 Pathlines,Streamlines,and Streaklines of a Flow 158

2.12 Angular Velocity,Vorticity,and Strain 163

2.13 Circulation 174

2.14 Stream Function 177

2.15 Velocity Potential 181

2.16 Relationship Between the Stream Function and Velocity Potential 184

2.17 How Do We Solve the Equations? 185

2.17.1 Theoretical (Analytical) Solutions 185

2.17.2 Numerical Solutions—Computational Fluid Dynamics (CFD) 187

2.17.3 The Bigger Picture 194

2.18 Summary 194

2.19 Problems 198

PART2 Inviscid,Incompressible Flow 201

Chapter 3 Fundamentals of Inviscid,Incompressible Flow 203

3.1 Introduction and Road Map 204

3.2 Bernoulli’s Equation 207

3.3 Incompressible Flow in a Duct:The Venturi and Low-Speed Wind Tunnel 211

3.4 Pitot Tube:Measurement of Airspeed 224

3.5 Pressure Coefficient 233

3.6 Condition on Velocity for Incompressible Flow 235

3.7 Governing Equation for Irrotational,Incompressible Flow:Laplace’s Equation 236

3.7.1 Infinity Boundary Conditions 239

3.7.2 Wall Boundary Conditions 239

3.8 Interim Summary 240

3.9 Uniform Flow:Our First Elementary Flow 241

3.10 Source Flow:Our Second Elementary Flow 243

3.11 Combination of a Uniform Flow with a Source and Sink 247

3.12 Doublet Flow:Our Third Elementary Flow 251

3.13 Nonlifting Flow over a Circular Cylinder 253

3.14 Vortex Flow:Our Fourth Elementary Flow 262

3.15 Lifting Flow over a Cylinder 266

3.16 The Kutta-Joukowski Theorem and the Generation of Lift 280

3.17 Nonlifting Flows over Arbitrary Bodies:The Numerical Source Panel Method 282

3.18 Applied Aerodynamics:The Flow over a Circular Cylinder—The Real Case 292

3.19 Historical Note:Bernoulli and Euler—The Origins of Theoretical Fluid Dynamics 300

3.20 Historical Note:d’Alembert and His Paradox 305

3.21 Summary 306

3.22 Problems 309

Chapter 4 Incompressible Flow over Airfoils 313

4.1 Introduction 315

4.2 Airfoil Nomenclature 318

4.3 Airfoil Characteristics 320

4.4 Philosophy of Theoretical Solutions for Low-Speed Flow over Airfoils:The Vortex Sheet 325

4.5 The Kutta Condition 330

4.5.1 Without Friction Could We Have Lift? 334

4.6 Kelvin’s Circulation Theorem and the Starting Vortex 334

4.7 Classical Thin Airfoil Theory:The Symmetric Airfoil 338

4.8 The Cambered Airfoil 348

4.9 The Aerodynamic Center:Additional Considerations 357

4.10 Lifting Flows over Arbitrary Bodies:The Vortex Panel Numerical Method 361

4.11 Modern Low-Speed Airfoils 367

4.12 Viscous Flow:Airfoil Drag 371

4.12.1 Estimating Skin-Friction Drag:Laminar Flow 372

4.12.2 Estimating Skin-Friction Drag:Turbulent Flow 374

4.12.3 Transition 376

4.12.4 Flow Separation 381

4.12.5 Comment 386

4.13 Applied Aerodynamics:The Flow over an Airfoil—The Real Case 387

4.14 Historical Note:Early Airplane Design and the Role of Airfoil Thickness 398

4.15 Historical Note:Kutta,Joukowski,and the Circulation Theoryof Lift 403

4.16 Summary 405

4.17 Problems 407

Chapter 5 Incompressible Flow over Finite Wings 411

5.1 Introduction:Downwash and Induced Drag 415

5.2 The Vortex Filament,the Biot-Savart Law,and Helmholtz’s Theorems 420

5.3 Prandtl’s Classical Lifting-Line Theory 424

5.3.1 Elliptical Lift Distribution 430

5.3.2 General Lift Distribution 435

5.3.3 Effect of Aspect Ratio 438

5.3.4 Physical Significance 444

5.4 A Numerical Nonlinear Lifting-Line Method 453

5.5 The Lifting-Surface Theory and the Vortex Lattice Numerical Method 457

5.6 Applied Aerodynamics:The Delta Wing 464

5.7 Historical Note:Lanchester and Prandtl—The Early Development of Finite-Wing Theory 476

5.8 Historical Note:Prandtl—The Man 480

5.9 Summary 483

5.10 Problems 484

Chapter 6 Three-Dimensional Incompressible Flow 487

6.1 Introduction 487

6.2 Three-Dimensional Source 488

6.3 Three-Dimensional Doublet 490

6.4 Flow over A Sphere 492

6.4.1 Comment on the Three-Dimensional Relieving Effect 494

6.5 General Three-Dimensional Flows:Panel Techniques 495

6.6 Applied Aerodynamics:The Flow over a Sphere—The Real Case 497

6.7 Applied Aerodynamics:Airplane Lift and Drag 500

6.7.1 Airplane Lift 500

6.7.2 Airplane Drag 502

6.7.3 Application of Computational Fluid Dynamics for the Calculation of Lift and Drag 507

6.8 Summary 511

6.9 Problems 512

PART 3 Inviscid,Compressible Flow 513

Chapter 7 Compressible Flow:Some Preliminary Aspects 515

7.1 Introduction 516

7.2 A Brief Review of Thermodynamics 518

7.2.1 Perfect Gas 518

7.2.2 Internal Energy and Enthalpy 518

7.2.3 First Law of Thermodynamics 523

7.2.4 Entropy and the Second Law of Thermodynamics 524

7.2.5 Isentropic Relations 526

7.3 Definition of Compressibility 530

7.4 Governing Equations for Inviscid,Compressible Flow 531

7.5 Definition of Total (Stagnation)Conditions 533

7.6 Some Aspects of Supersonic Flow:Shock Waves 540

7.7 Summary 544

7.8 Problems 546

Chapter 8 Normal Shock Waves and Related Topics 549

8.1 Introduction 550

8.2 The Basic Normal Shock Equations 551

8.3 Speed of Sound 555

8.3.1 Comments 563

8.4 Special Forms of the Energy Equation 564

8.5 When Is A Flow Compressible? 572

8.6 Calculation of Normal Shock-Wave Properties 575

8.6.1 Comment on the Use of Tables to Solve Compressible Flow Problems 590

8.7 Measurement of Velocity in a Compressible Flow 591

8.7.1 Subsonic Compressible Flow 591

8.7.2 Supersonic Flow 592

8.8 Summary 596

8.9 Problems 599

Chapter 9 Oblique Shock and Expansion Waves 601

9.1 Introduction 602

9.2 Oblique Shock Relations 608

9.3 Supersonic Flow over Wedges and Cones 622

9.3.1 A Comment on Supersonic Lift and Drag Coefficients 625

9.4 Shock Interactions and Reflections 626

9.5 Detached Shock Wave in Front of a Blunt Body 632

9.5.1 Comment on the Flow Field behind a Curved Shock Wave:Entropy Gradients and Vorticity 636

9.6 Prandtl-Meyer Expansion Waves 636

9.7 Shock-Expansion Theory:Applications to Supersonic Airfoils 648

9.8 A Comment on Lift and Drag Coefficients 652

9.9 The X-15 and Its Wedge Tail 652

9.10 Viscous Flow:Shock-Wave/Boundary-Layer Interaction 657

9.11 Historical Note:Ernst Mach—A Biographical Sketch 659

9.12 Summary 662

9.13 Problems 663

Chapter 10 Compressible Flow through Nozzles,Diffusers,and Wind Tunnels 669

10.1 Introduction 670

10.2 Governing Equations for Quasi-One-Dimensional Flow 672

10.3 Nozzle Flows 681

10.3.1 More on Mass Flow 695

10.4 Diffusers 696

10.5 Supersonic Wind Tunnels 698

10.6 Viscous Flow:Shock-Wave/Boundary-Layer Interaction inside nozzles 704

10.7 Summary 706

10.8 Problems 707

Chapter 11 Subsonic Compressible Flow over Airfoils:Linear Theory 711

11.1 Introduction 712

11.2 The Velocity Potential Equation 714

11.3 The Linearized Velocity Potential Equation 717

11.4 Prandtl-Glauert Compressibility Correction 722

11.5 Improved Compressibility Corrections 727

11.6 Critical Mach Number 728

11.6.1 A Comment on the Location of Minimum Pressure (Maximum Velocity) 737

11.7 Drag-Divergence Mach Number:The Sound Barrier 737

11.8 The Area Rule 745

11.9 The Supercritical Airfoil 747

11.10 CFD Applications:Transonic Airfoils and Wings 749

11.11 Applied Aerodynamics:The Blended Wing Body 754

11.12 Historical Note:High-Speed Airfoils—Early Research and Development 760

11.13 Historical Note:The Origin of The Swept-Wing Concept 764

11.14 Historical Note:Richard T. Whitcomb—Architect of the Area Rule and the Supercritical Wing 773

11.15 Summary 774

11.16 Problems 776

Chapter 12 Linearized Supersonic Flow 779

12.1 Introduction 780

12.2 Derivation of the Linearized Supersonic Pressure Coefficient Formula 780

12.3 Application to Supersonic Airfoils 784

12.4 Viscous Flow:Supersonic Airfoil Drag 790

12.5 Summary 793

12.6 Problems 794

Chapter 13 Introduction to Numerical Techniques for Nonlinear Supersonic Flow 797

13.1 Introduction:Philosophy of Computational Fluid Dynamics 798

13.2 Elements of the Method of Characteristics 800

13.2.1 Internal Points 806

13.2.2 Wall Points 807

13.3 Supersonic Nozzle Design 808

13.4 Elements of Finite-Difference Methods 811

13.4.1 Predictor Step 817

13.4.2 Corrector Step 817

13.5 The Time-Dependent Technique:Application to Supersonic Blunt Bodies 818

13.5.1 Predictor Step 822

13.5.2 Corrector Step 822

13.6 Flow over Cones 826

13.6.1 Physical Aspects of Conical Flow 827

13.6.2 Quantitative Formulation 828

13.6.3 Numerical Procedure 833

13.6.4 Physical Aspects of Supersonic Flow Over Cones 834

13.7 Summary 837

13.8 Problem 838

Chapter 14 Elements of Hypersonic Flow 839

14.1 Introduction 840

14.2 Qualitative Aspects of Hypersonic Flow 841

14.3 Newtonian Theory 845

14.4 The Lift and Drag of Wings at Hypersonic Speeds:Newtonian Results for a Flat Plate at Angle of Attack 849

14.4.1 Accuracy Considerations 856

14.5 Hypersonic Shock-Wave Relations and Another Look at Newtonian Theory 860

14.6 Mach Number Independence 864

14.7 Hypersonics and Computational Fluid Dynamics 866

14.8 Hypersonic Viscous Flow:Aerodynamic Heating 869

14.8.1 Aerodynamic Heating and Hypersonic Flow—the Connection 869

14.8.2 Blunt versus Slender Bodies in Hypersonic Flow 871

14.8.3 Aerodynamic Heating to a Blunt Body 874

14.9 Applied Hypersonic Aerodynamics:Hypersonic Waveriders 876

14.9.1 Viscous-Optimized Waveriders 882

14.10 Summary 890

14.11 Problems 890

PART4 Viscous Flow 891

Chapter 15 Introduction to the Fundamental Principles and Equations of Viscous Flow 893

15.1 Introduction 894

15.2 Qualitative Aspects of Viscous Flow 895

15.3 Viscosity and Thermal Conduction 903

15.4 The Navier-Stokes Equations 908

15.5 The Viscous Flow Energy Equation 912

15.6 Similarity Parameters 916

15.7 Solutions of Viscous Flows:A Preliminary Discussion 920

15.8 Summary 923

15.9 Problems 925

Chapter 16 A Special Case:Couette Flow 927

16.1 Introduction 927

16.2 Couette Flow:General Discussion 928

16.3 Incompressible (Constant Property) Couette Flow 932

16.3.1 Negligible Viscous Dissipation 938

16.3.2 Equal Wall Temperatures 939

16.3.3 Adiabatic Wall Conditions (Adiabatic Wall Temperature) 941

16.3.4 Recovery Factor 944

16.3.5 Reynolds Analogy 945

16.3.6 Interim Summary 946

16.4 Compressible Couette Flow 948

16.4.1 Shooting Method 950

16.4.2 Time-Dependent Finite-Difference Method 952

16.4.3 Results for Compressible Couette Flow 956

16.4.4 Some Analytical Considerations 958

16.5 Summary 963

Chapter 17 Introduction to Boundary Layers 965

17.1 Introduction 966

17.2 Boundary-Layer Properties 968

17.3 The Boundary-Layer Equations 974

17.4 How Do We Solve the Boundary-Layer Equations? 977

17.5 Summary 979

Chapter 18 Laminar Boundary Layers 981

18.1 Introduction 981

18.2 Incompressible Flow over a Flat Plate:The Blasius Solution 982

18.3 Compressible Flow over a Flat Plate 989

18.3.1 A Comment on Drag Variation with Velocity 1000

18.4 The Reference Temperature Method 1001

18.4.1 Recent Advances:The Meador-Smart Reference Temperature Method 1004

18.5 Stagnation Point Aerodynamic Heating 1005

18.6 Boundary Layers over Arbitrary Bodies:Finite-Difference Solution 1011

18.6.1 Finite-Difference Method 1012

18.7 Summary 1017

18.8 Problems 1018

Chapter 19 Turbulent Boundary Layers 1019

19.1 Introduction 1020

19.2 Results for Turbulent Boundary Layers on a Flat Plate 1020

19.2.1 Reference Temperature Method for Turbulent Flow 1022

19.2.2 The Meador-Smart Reference Temperature Method for Turbulent Flow 1024

19.2.3 Prediction ofAirfoil Drag 1025

19.3 Turbulence Modeling 1025

19.3.1 The Baldwin-Lomax Model 1026

19.4 Final Comments 1028

19.5 Summary 1029

19.6 Problems 1030

Chapter 20 Navier-Stokes Solutions:Some Examples 1031

20.1 Introduction 1032

20.2 The Approach 1032

20.3 Examples of Some Solutions 1033

20.3.1 Flow over a Rearward-Facing Step 1033

20.3.2 Flow over an Airfoil 1033

20.3.3 Flow over a Complete Airplane 1036

20.3.4 Shock-Wave/Boundary-Layer Interaction 1037

20.3.5 Flow over an Airfoil with a Protuberance 1038

20.4 The Issue of Accuracy for the Prediction of Skin Friction Drag 1040

20.5 Summary 1045

Appendix A Isentropic Flow Properties 1047

Appendix B Normal Shock Properties 1053

Appendix C Prandtl-Meyer Function and Mach Angle 1057

Appendix D Standard Atmosphere,SI Units 1061

Appendix E Standard Atmosphere,English Engineering Units 1071

Bibliography 1079

Index 1085

返回顶部