A brief introduction to fluid mechanics 2nd EditionPDF电子书下载
- 电子书积分:16 积分如何计算积分?
- 作 者:Donald F. Young ; Bruce R. Munson ; Theodore H. Okiishi
- 出 版 社:Wiley
- 出版年份:2001
- ISBN:0471362433
- 页数:519 页
1INTRODUCTION 1
1.1 Some Characteristics of Fluids 1
1.2 Dimensions, Dimensional Homogeneity, and Units 2
1.2.1 Systems of Units 5
1.3 Analysis of Fluid Behavior 7
1.4 Measures of Fluid Mass and Weight 7
1.4.1 Density 7
1.4.2 Specific Weight 8
1.4.3 Specific Gravity 9
1.5 Ideal Gas Law 9
1.6 Viscosity 11
1.7 Compressibility of Fluids 16
1.7.1 Bulk Modulus 16
1.7.2 Compression and Expansion of Gases 16
1.7.3 Speed of Sound 17
1.8 Vapor Pressure 19
1.9 Surface Tension 19
Problems 22
2 FLUID STATICS 27
2.1 Pressure at a Point 27
2.2 Basic Equation for Pressure Field 29
2.3 Pressure Variation in a Fluid at Rest 31
2.3.1 Incompressible Fluid 31
2.3.2 Compressible Fluid 34
2.4 Standard Atmosphere 34
2.5 Measurement of Pressure 35
2.6 Manometry 37
2.6.1 Piezometer Tube 37
2.6.2 U-Tube Manometer 38
2.6.3 Inclined-Tube Manometer 41
2.7 Mechanical and Electronic Pressure Measuring Devices 42
2.8 Hydrostatic Force on a Plane Surface 43
2.9 Pressure Prism 48
2.10 Hydrostatic Force on a Curved Surface 51
2.11 Buoyancy, Flotation, and Stability 53
2.11.1 Archimedes' Principle 53
2.11.2 Stability 55
2.12 Pressure Variation in a Fluid with Rigid-Body Motion 56
References 56
Problems 57
3 ELEMENTARY FLUID DYNAMICS—THE BERNOULLI EQUATION 67
3.1 Newton's Second Law 67
3.2 F = ma Along a Streamline 68
3.3 F = ma Normal to a Streamline 73
3.4 Physical Interpretation 75
3.5 Static, Stagnation, Dynamic,and Total Pressure 78
3.6 Examples of Use of the Bernoulli Equation 81
3.6.1 Free Jets 81
3.6.2 Contined Flows 82
3.6.3 Flowrate Measurement 89
3.7 The Energy Line and the Hydraulic Grade Line 93
3.8 Restrictions on the Use of the Bernoulli Equation 96
Problems 97
4 FLUID KINEMATICS 105
4.1 The Velocity Field 105
4.1.1 Eulerian and Lagrangian Flow Descriptions 107
4.1.2 One-, Two-, and Three-Dimensional Flows 108
4.1.3 Steady and Unsteady Flows 109
4.1.4 Streamlines, Streaklines,and Pathlines 109
4.2 The Acceleration Field 114
4.2.1 The Material Derivative 114
4.2.2 Unsteady Effects 116
4.2.3 Convective Effects 117
4.2.4 Streamline Coordinates 118
4.3 Control Volume and System Representations 119
4.4 The Reynolds Transport Theorem 120
4.4.1 Derivation of the Reynolds Transport Theorem 121
4.4.2 Physical Interpretation 126
4.4.3 Selection of a Control Volume 127
References 127
Problems 127
5FINITE CONTROL VOLUME ANALYSIS 132
5.1 Conservation of Mass—The Continuity Equation 132
5.1.1 Derivation of the Continuity Equation 132
5.1.2 Fixed, Nondeforming Control Volume 134
5.1.3 Moving, Nondeforming Control Volume 139
5.2 Newton's Second Law—The Linear Momentum and Moment-of-Momentum Equations 141
5.2.1 Derivation of the Linear Momentum Equation 141
5.2.2 Application of the Linear Momentum Equation 142
5.2.3 Derivation of the Moment-of-Momentum Equation 156
5.2.4 Application of the Moment-of-Momentum Equation 157
5.3 First Law of Thermodynamics—The Energy Equation 166
5.3.1 Derivation of the Energy Equation 166
5.3.2 Application of the Energy Equation 169
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation 172
5.3.4 Application of the Energy Equation to Nonuniform Flows 179
Problems 182
6DIFFERENTIAL ANALYSIS OF FLUID FLOW 196
6.1 Fluid Element Kinematics 197
6.1.1 Velocity and Acceleration Fields Revisited 197
6.1.2 Linear Motion and Deformation 198
6.1.3 Angular Motion and Deformation 199
6.2 Conservation of Mass 203
6.2.1 Differential Form of Continuity Equation 203
6.2.2 Cylindrical Polar Coordinates 205
6.2.3 The Stream Function 206
6.3 Conservation of Linear Momentum 210
6.3.1 Description of Forces Acting on Differential Element 211
6.3.2 Equations of Motion 213
6.4 Inviscid Flow 214
6.4.1 Euler's Equations of Motion 214
6.4.2 The Bernoulli Equation 215
6.4.3 Irrotational Flow 217
6.4.4 The Bern oulli Equation for Irrotational Flow 218
6.4.5 The Velocity Potential 218
6.5 Some Basic, Plane Potential Flows 223
6.5.1 Uniform Flow 224
6.5.2 Source and Sink 225
6.5.3 Vortex 227
6.5.4 Doublet 231
6.6 Superposition of Basic, Plane Potential Flows 233
6.6.1 Source in a Uniform Stream—Half-Body 233
6.6.2 Flow Around a Circular Cylinder 238
6.7 Other Aspects of Potential Flow Analysis 244
6.8 Viscous Flow 244
6.8.1 Stress-Deformation Relationships 244
6.8.2 The Navier-Stokes Equations 246
6.9 Some Simple Solutions for Viscous,Incompressible Fluids 247
6.9.1 Steady, Laminar Flow Between Fixed Parallel Plates 247
6.9.2 Couette Flow 250
6.9.3 Steady, Laminar Flow in Circular Tubes 253
6.10 Other Aspects of Differential Analysis 255
References 256
Problems 256
7SIMILITUDE, DIMENSIONAL ANALYSIS, AND MODELING 265
7.1 Dimensional Analysis 265
7.2 Buckingham Pi Theorem 267
7.3 Determination of Pi Terms 268
7.4 Some Additional Comments About Dimensional Analysis 274
7.4.1 Selection of Variables 274
7.4.2 Determination of Reference Dimensions 275
7.4.3 Uniqueness of Pi Terms 275
7.5 Determination of Pi Terms by Inspection 276
7.6 Common Dimensionless Groups in Fluid Mechanics 277
7.7 Correlation of Experimental Data 278
7.7.1 Problems with One Pi Term 279
7.7.2 Problems with Two or More Pi Terms 280
7.8 Modeling and Similitude 283
7.8.1 Theory of Models 283
7.8.2 Model Scales 287
7.8.3 Distorted Models 288
7.9 Some Typical Model Studies 289
7.9.1 Flow Through Closed Conduits 289
7.9.2 Flow Around Immersed Bodies 291
7.9.3 Flow with a Free Surface 294
References 296
Problems 296
8VISCOUS FLOW IN PIPES 304
8.1 General Characteristics of Pipe Flow 304
8.1.1 Laminar or Turbulent Flow 305
8.1.2 Entrance Region and Fully Developed Flow 307
8.2 Fully Developed Laminar Flow 308
8.2.1 From F = ma Applied to a Fluid Element 308
8.2.2 From the Navier-Stokes Equations 313
8.3 Fully Developed Turbulent Flow 313
8.3.1 Transition from Laminar to Turbulent Flow 313
8.3.2 Turbulent Shear Stress 314
8.3.3 Turbulent Velocity Profile 315
8.4 Dimensional Analysis of Pipe Flow 316
8.4.1 The Moody Chart 316
8.4.2 Minor Losses 321
8.4.3 Noncircular Conduits 329
8.5 Pipe Flow Examples 331
8.5.1 Single Pipes 331
8.5.2 Multiple Pipe Systems 341
8.6 Pipe Flowrate Measurement 342
References 347
Problems 347
9FLOW OVER IMMERSED BODIES 355
9.1 General External Flow Characteristics 355
9.1.1 Lift and Drag Concepts 356
9.1.2 Characteristics of Flow Past an Object 360
9.2 Boundary Layer Characteristics 363
9.2.1 Boundary Layer Structure and Thickness on a Flat Plate 363
9.2.2 Prandtl/Blasius Boundary Layer Solution 365
9.2.3 Momentum Integral Boundary Layer Equation for a Flat Plate 366
9.2.4 Transition from Laminar to Turbulent Flow 370
9.2.5 Turbulent Boundary Layer Flow 372
9.2.6 Effects of Pressure Gradient 375
9.3 Drag 378
9.3.1 Friction Drag 379
9.3.2 Pressure Drag 379
9.3.3 Drag Coefficient Data and Examples 380
9.4 Lift 395
9.4.1 Surface Pressure Distribution 395
9.4.2 Circulation 399
References 400
Problems 401
10OPEN-CHANNEL FLOW 409
10.1 General Characteristics of Open-Channel Flow 409
10.2 Surface Waves 410
10.2.1 Wave Speed 410
10.2.2 Froude Number Effects 413
10.3 Energy Considerations 413
10.3.1 Specific Energy 414
10.4 Uniform Depth Channel Flow 416
10.4.1 Uniform Flow Approximations 416
10.4.2 The Chezy and Manning Equations 417
10.4.3 Uniform Depth Examples 418
10.5 Gradually Varied Flow 425
10.6 Rapidly Varied Flow 426
10.6.1 The Hydraulic Jump 426
10.6.2 Sharp-Crested Weirs 431
10.6.3 Broad-Crested Weirs 433
10.6.4 Underflow Gates 437
References 438
Problems 438
11TURBOMACHINES 445
11.1 Introduction 446
11.2 Basic Energy Considerations 447
11.3 Basic Angular Momentum Considerations 450
11.4 The Centrifugal Pump 452
11.4.1 Theoretical Considerations 452
11.4.2 Pump Performance Characteristics 456
11.4.3 System Characteristics and Pump Selection 459
11.5 Dimensionless Parameters and Similarity Laws 462
11.5.1 Specific Speed 466
11.6 Axial-Flow and Mixed-Flow Pumps 467
11.7 Turbines 469
11.7.1 Impulse Turbines 470
11.7.2 Reaction Turbines 477
11.8 Compressible Flow Turbomachines 481
References 482
Problems 482
A UNIT CONVERSION TABLES 490
B PHYSICAL PROPERTIES OF FLUIDS 494
C PROPERTIES OF THE U.S.STANDARD ATMOSPHERE 500
ANSWERS 502
INDEX 507
- 《量子系统的非平衡多体理论》(意)G.斯蒂芬尼茨,(德)R.冯·莱文 2019
- 《少数民族作家海外推广系列 祭语风中》Bruce Humes,范伟责任编辑;(美)Joshua Dyer译;(中国)次仁罗布 2019
- 《来画石头吧 方寸之间挥洒你的奇思妙想》(土)F.塞纳兹·拜克著 2019
- 《软物质前沿科学丛书 无处不在的巨分子 原书第2版》钱俊,陈艳峰责编;李安邦译;(美)亚历山大·Y.格罗斯贝格,(俄)阿列克谢·R.霍赫洛夫 2020
- 《无癌人生 生得幸福 死得安详》杨莉责任编辑;杨志平,赵勇译;(新加坡)Min Young Lee 2019
- 《白色生物技术》(德)R.乌尔伯 D.塞尔主编;李爽,杨博译 2016
- 《无处可避》(新西兰)詹姆斯·R.弗林著 2019
- 《菊芋的生物学和化学》(美)斯坦利·J.凯斯(Stanley J.Kays),(英)史蒂芬·F.诺丁汉著 2018
- 《量子力学=Quantum Mechanics(Jones & Bartlett):英文》(美)B.C.里德(Bruce Cameron Reed)著 2018
- 《黑衣人》(美)马克·R.莱文著;江溯译 2019