当前位置:首页 > 外文
Fundamentals of engineering thermodynamics
Fundamentals of engineering thermodynamics

Fundamentals of engineering thermodynamicsPDF电子书下载

外文

  • 电子书积分:26 积分如何计算积分?
  • 作 者:John R.Howell Richard O.Buckius
  • 出 版 社:
  • 出版年份:2222
  • ISBN:0079093698
  • 页数:1033 页
图书介绍:
《Fundamentals of engineering thermodynamics》目录
标签:

CHAPTER 1 Introduction 2

1.1 Energy and Society 5

1.1.1 Value of Energy 5

1.1.2 Need to Understand Energy and Its Forms 5

1.2 Energy Balance Approach—Applications in Engineering 6

1.3 Work and Heat Transfer 9

1.4 Macroscopic versus Microscopic Viewpoint 10

1.5 Problem Solving 10

1.6 Units 12

1.7 Scope of Text 14

PROBLEMS 15

REFERENCES 17

CHAPTER 2 Energy and Energy Transfer 18

2.1 Introduction 21

2.2 Concepts and Definitions 21

2.2.1 System and Surroundings 21

2.2.2 System Description 23

2.2.3 Equilibrium States and Quasi-Equilibrium Processes 25

2.3 Some Common Properties 26

2.3.1 Pressure P 26

2.3.2 Specific Volume v 28

2.3.3 Temperature T 28

2.3.4 The Ideal Gas 29

2.4 Energy 31

2.5 Energy Transfer 32

2.5.1 Work 33

2.5.2 Heat Transfer 49

2.5.3 Power 50

2.6 Energy—What Is It? 51

PROBLEMS 52

REFERENCES 8o 82

CHAPTER 3 Properties of Common Substances 82

3.1 Introduction 85

3.2 State Postulate—Applications to Property Relations 85

3.3 Simple Compressible Substances 87

3.3.1 Liquid Phases 87

3.3.2 Saturation and Phases 88

3.3.3 Quality 89

3.3.4 Superheated Vapor 91

3.3.5 P-v Diagram 91

3.4 Other Thermodynamic Properties 99

3.4.1 Internal Energy and Enthalpy 99

3.4.2 Specific Heats 100

3.5 Development of Property Data 101

3.5.1 Graphical Data Presentation 101

3.5.2 Equation of State 102

3.5.3 Tabular Data 117

3.5.4 Computerized Property Data Retrieval 124

3.6 Remarks 125

PROBLEMS 126

REFERENCES 138

CHAPTER 4 First Law of Thermodynamics 140

4.1 Introduction 143

4.2 Conservation Principles and the First Law of Thermodynamics 143

4.2.1 Conservation of Mass 144

4.2.2 First Law of Thermodynamics 144

4.2.3 Generalized Control Mass Forms for Conservation of Mass and the First Law 155

4.2.4 Other Conservation Relations 156

4.3 Control Volume Formulation 157

4.3.1 Conservation of Mass 157

4.3.2 Conservation of Energy 159

4.3.3 Generalized Control Volume Forms for Conservation of Mass and the First Law 164

4.4 Control Volume Analysis 167

4.4.1 Inlet and Outlet Considerations 167

4.4.2 Considerations within the Control Volume 169

4.4.3 Steady State Analysis 171

4.4.4 Unsteady State Analysis 171

4.5 Control Volume Applications 173

4.5.1 Steady State Work Applications 174

4.5.2 Magnitude of Various Terms in the First Law 178

4.5.3 Steady State Flow Applications 180

4.5.4 Unsteady State Work Applications 184

4.5.5 Unsteady State Flow Applications 186

4.6 Other Statements of the First Law 190

PROBLEMS 191

CHAPTER 5 Entropy and the Second Law of Thermodynamics 246

5.1 Introduction 249

5.1.1 Physical Observations 249

5.1.2 Increasing Disorder by Heat Transfer 252

5.2 Entropy and the Second Law for an lsolated System 253

5.3 Reversible and lrreversible Processes 255

5.4 Temperature and Pressure Definitions 258

5.4.1 Temperature 259

5.4.2 Pressure 260

5.5 Entropy—The Property 263

5.5.1 Entropy Relations 265

5.5.2 Ideal Gas Relations 267

5.5.3 Incompressible Fluid or Solid Relations 270

5.6 Control Mass Formulation 272

5.7 Classical Approach to the Second Law of Thermodynamics 281

5.7.1 Cycles 281

5.7.2 Reversible and Irreversible Processes 283

5.7.3 Statements of the Second Law of Thermodynamics and Resultant Conclusions 284

5.7.4 Thermodynamic Temperature Scale 287

5.7.5 The Clausius Inequality 287

5.7.6 Entropy 288

5.8 Control Volume Formulation and Analysis 290

5.8.1 Spatial and Time Variation Idealizations 293

5.8.2 Applications 294

5.9 Isentropic Process 300

5.9.1 Isentropic Process for an Ideal Gas 301

5.9.2 Isentropic Process for an Incompressible Fluid or Solid 305

5.10 Special Considerations 306

5.11 Component Efficiencies 312

5.11.1 Turbine Efficiency 312

5.11.2 Compressors and Pumps 323

5.11.3 Nozzles 327

5.11.4 Heat Exchangers 334

5.11.5 Control Mass Efficiency 335

5.12 Cyclic Processes and the Carnot Cycle 336

5.13 Temperature Measurement 341

5.14 Other Statements of the Second Law 341

5.15 Summary 343

PROBLEMS 344

REFERENCES 403

CHAPTER 6 Thermodynamic Cycle Analysis and Applications to Gas Cycles 404

6.1 Introduction to Heat Engine Cycles 407

6.1.1 Cycle Analysis Methodology 408

6.1.2 Mean Effective Pressure 410

6.1.3 Efficiency and Practicality 413

6.2 Gas Cycle Analysis 414

6.2.1 Air-Standard Cycles 414

6.2.2 Effect of the Assumption of Temperature-Independent Specific Heats 415

6.2.3 The Air-Standard Carnot Cycle 416

6.3 Gas Cycle Heat Engines 419

6.3.1 Stirling Cycle 419

6.3.2 Ericsson Cycle 422

6.3.3 Brayton Cycle (External Heat Transfer) 425

6.4 Internal Combustion Cycles 437

6.4.1 Brayton Cycle (Internal Combustion) 437

6.4.2 Applications of the Brayton Cycle 438

6.4.3 Air-Standard Otto Cycle 443

6.4.4 Air-Standard Diesel Cycle 448

6.4.5 Dual Cycle 449

6.4.6 Other Gas Cycles 454

6.5 Refrigeration, Air Conditioning, and Heat Pump Cycles 461

6.5.1 Coefficient of Performance for Air Conditioners and Chillers 461

6.5.2 Coefficient of Performance for Heat Pumps 462

6.5.3 Gas Cooling Cycles Driven by Work Input 462

6.5.4 Cooling Cycles Driven by Heat Transfer 464

6.6 Concluding Remarks 466

PROBLEMS 467

CHAPTER 7 Vapor Cycle Analysis 496

7.1 Vapor Cycle Analysis 499

7.1.1 Vapor Cyele Heat Engines 499

7.1.2 Vapor Cycle Cooling Devices and Heat Pumps 500

7.2 Rankine Cycle 500

7.2.1 Inefficiencies of Real Cycles 507

7.2.2 Increasing the Rankine Cycle Efficiency 509

7.2.3 Applications of the Rankine Cycle 526

7.3 Other Vapor Heat Engine Cycles 529

7.3.1 The Kalina Cycle 529

7.3.2 Cogeneration and Combined-Cycle Plants 531

7.4 Vapor Cooling and Heat Pump Cycles 535

7.4.1 Vapor Compression Systems 535

7.4.2 Vapor Cooling Cycles Driven by Heat Transfer 539

7.5 Concluding Remarks 541

PROBLEMS 542

CHAPTER 8 Analysis Using the Second Law of Thermodynamics 564

8.1 Introduction 567

8.2 Reversible Work 568

8.3 Availability 573

8.4 Irreversibility 578

8.5 Energy, Helmholtz Function, Gibbs Function 581

8.6 General Process Comparisons 582

8.7 Second Law Efficiencies 590

8.7.1 Second Law Efficiency of Components That Produce Work or Require Work Input 590

8.7.2 Second Law Efficiency of Other Components 592

8.7.3 Second Law Efficiency of Heat Engine and Refrigeration Cycles 594

8.8 Summary 596

PROBLEMS 597

REFERENCES 605

CHAPTER 9 General Property Relations and Equations of State 608

9.1 Introduction 611

9.2 Relations among Properties 611

9.2.1 Fundamental Equations and Maxwell's Relations 611

9.2.2 Clapeyron Equation 615

9.2.3 Generation of Property Tables 616

9.3 Principle of Corresponding States 620

9.3.1 Some Observations Based on van der Waals' Equation 620

9.3.2 Expanded Use of the Principle of Corresponding States 622

9.4 Some Other Properties 631

9.4.1 Isothermal Compressibility 632

9.4.2 Coefficient of Thermal Expansion 632

9.4.3 Joule-Thomson Coefficient 633

9.4.4 Specific Heats 637

9.4.5 Fugacity 638

9.5 Summary 640

PROBLEMS 640

REFERENCES 646

CHAPTER 10 Multicomponent Systems without Chemical Reaction 648

10.1 Introduction 651

10.2 Multicomponent Measures 651

10.3 Properties of a Multicomponent Ideal Gas 653

10.4 Thermodynamic Analysis of Ideal Gas Mixtures 660

10.4.1 Applications to Processes with Constant Composition 662

10.4.2 Entropy Changes in the Mixing of Ideal Gases 663

10.5 Multicomponent Analysis of Ideal Gas-Vapor Mixtures 668

10.5.1 Measures and Properties 669

10.5.2 Psychrometrics 673

10.5.3 Thermodynamic Analysis 675

10.6 Psychrometric Chart 680

10.7 Applications 681

10.7.1 Heat Transfer at Constant w 681

10.7.2 Humidification 682

10.7.3 Dehumidification 683

10.7.4 Mixing of Air-Water Vapor Streams 684

10.8 Nonideal Mixtures 686

10.8.1 Mixtures of Nonideal Gases 686

10.8.2 Other Mixture Rules 687

10.9 General Mixture Relations 688

10.9.1 Partial Molal Properties 689

10.9.2 Property Changes during Mixing 692

10.10 Summary 692

PROBLEMS 693

REFERENCES 712

CHAPTER 11 Chemical Reactions and Combustion 714

11.1 Introduction 717

11.2 Chemical Reactions in Combustion Systems 717

11.2.1 The General Case 717

11.2.2 Combustion with Stoichiometric or Excess Air 718

11.2.3 Air-Fuel and Equivalence Ratios 722

11.3 Establishing a Common Basis for Combustion Processes 722

11.3.1 Zero-Enthalpy Basis 722

11.3.2 Enthalpy of Formation 722

11.3.3 Zero-Entropy Basis 728

11.4 Combustion Processes 729

11.4.1 Combustion at Constant Pressure 729

11.4.2 Combustion at Constant Volume 731

11.4.3 Adiabatic Flame Temperature 732

11.4.4 Explosion Temperature (Constant-Volume Combustion) 739

11.5 Applications to Combustion Systems 741

11.5.1 Accounting for Excess Air 741

11.5.2 Accounting for Air or Fuel Preheating 743

11.5.3 Applications 744

11.6 Applying the Second Law to Combustion Processes 746

11.6.1 Determining the Possibility of Reaction:Adiabatic Combustion 746

11.6.2 Determining the Possibility of Reaction:General Combustion Problems 749

11.7 Applications to Real Devices: Efficiency of Combustion Equipment 752

PROBLEMS 762

REFERENCES 771

CHAPTER 12 Phase and Chemical Equilibrium 772

12.1 Introduction 775

12.1.1 Chemical Equilibrium 775

12.1.2 The Gibbs-Duhem Relation 776

12.2 Equilibrium in Nonreacting Systems 777

12.2.1 Isolated Systems 778

12.2.2 Single-Component Phase Equilibrium 778

12.2.3 Ideal Solutions 780

12.2.4 Phase Rule 783

12.3 Equilibrium in Systems with Chemical Reaction 785

12.3.1 Finding the Equilibrium Constant 786

12.3.2 Values of the Equilibrium Constant 790

12.3.3 Temperature Dependence of K 794

12.3.4 Pressure Dependence of Equilibrium Concentrations 796

12.3.5 Phase Rule 797

12.4 General Equilibrium 798

12.4.1 Isolated System in Chemical Equilibrium 799

12.4.2 Control Mass at Constant Volume 800

12.4.3 Control Mass at Constant Temperature and Pressure 803

12.4.4 General Criterion for Chemical Equilibruim 804

12.5 Concluding Remarks 805

PROBLEMS 805

CHAPTER 13 Introduction to Microscopic Thermodynamics 812

13.1 Introduction 815

13.2 Defining a Microscopic System 815

13.2.1 General Properties 816

13.2.2 Allowable Microstates 818

13.3 Influence of Ouantum Effects 824

13.3.1 An Example of Quantization 825

13.3.2 Uncertainty Principle 826

13.3.3 Bose-Einstein Statistics 827

13.3.4 Fermi-Dirac Statistics 828

13.3.5 Maxwell-Boltzmann Statistics 829

13.4 Application of Microsystem Information:Entropy and Other Properties 830

13.5 First Law 837

13.6 Concluding Remarks 837

PROBLEMS 838

APPENDIX A A Short History of the Development of Thermodynamics 845

APPENDIX B Conversion Factors 863

APPENDIX C Thermodynamic Properties in Dimensionless Form or for Both SI and USCS Units 867

APPENDIX D Tables and Diagrams of Thermodynamic Data for Various Substances —SI Units 909

APPENDIX E Tables and Diagrams of Thermodynamic Data for Various Substances —USCS Units 947

APPENDIX F Reynolds' Transport Theorem 989

APPENDIX G Computerized Tables of Thermodynamic Properties 995

APPENDIX H Fundamentals of Mathematics for Thermodynamics 999

APPENDIX I Answers to Selected Homework Problems 1017

Index 1025

返回顶部