NOTES ON SET THEORYPDF电子书下载
- 电子书积分:11 积分如何计算积分?
- 作 者:N.MOSCHOVAKIS
- 出 版 社:Springer-Verlag
- 出版年份:2222
- ISBN:0387941800
- 页数:272 页
1.Introduction 1
Problems for Chapter 1 5
2.Equinumerosity 7
Countable unions of countable sets 9
The reals are uncountable 11
A <c P(A) 15
Schroder-Bernstein Theorem 16
Problems for Chapter 2 18
3.Paradoxes and axioms 19
The Russell paradox 21
Axioms (Ⅰ) - (Ⅱ) 24
Axioms for definite conditions and operations 27
Classes 28
Problems for Chapter 3 31
4.Are sets all there is? 33
Ordered pairs 35
Disjoint union 36
Relations 37
Equivalence relations 38
Functions 39
Cardinal numbers 43
Structured sets 45
Problems for Chapter 4 46
5.The natural numbers 53
Existence of the Natural Numbers 54
Uniqueness of the Natural Numbers 54
Recursion Theorem 55
Addition and multiplication 59
Pigeonhole Principle 64
Strings 67
The continuum 69
Problems for Chapter 5 69
6.Fixed points 73
Posets 73
Partial functions 76
Inductive posets 77
Continuous Least Fixed Point Theorem 79
About topology 81
Graphs 85
Problems for Chapter 6 86
Streams 87
Scott topology 91
Directed-complete posets 91
7.Well ordered sets 93
Transfinite induction 98
Transfinite recursion 100
Iteration Lemma 100
Comparability of well ordered sets 104
Wellfoundedness of ≤0 105
Hartogs’ Theorem 106
Fixed Point Theorem 108
Least Fixed Point Theorem 108
Problems for Chapter 7 110
8.Choices 117
Axiom of Choice 117
Equivalents of AC 120
Countable Principle of Choice, ACN 122
Axiom (Ⅵ) of Dependent Choices, DC 122
The axiomatic theories ZDC, ZAC 125
Consistency and independence results 126
Problems for Chapter 8 127
9.Choice’s consequences 131
Trees 132
Konig’s Lemma 133
Fan Theorem 134
Wellfoundedness of <c 134
Best wellorderings 135
Absorption laws 138
Konig’s Theorem 140
Coninality,regular cardinals 141
Problems for Chapter 9 142
10.Baire space 147
Cardinality of perfect pointsets 150
Cantor-Bendixson Theorem 151
Property P 152
Analytic pointsets 153
Perfect Set Theorem 157
Borel sets 160
Counterexample to the general property P 162
Consistency and independence results 164
Problems for Chapter 10 165
Borelisomorphisms 166
11.Replacement and other axioms 169
Replacement Axiom (Ⅷ) 170
The axiomatic theories ZFDC, ZFAC 170
Grounded Recursion Theorem 172
Transitive classes 174
Basic Closure Lemma 175
Hereditarily 176
nite sets 176
Zermelo universes 177
The least Zermelo universe 179
Grounded sets 180
Principle of Foundation 180
The axiomatic theory Zermelo-F raenkel, ZFC 181
Z-F universes 183
von Neumann’s class V 183
Mostowski Collapsing Lemma 183
Consistency and independence results 184
Problems for Chapter 11 185
12.Ordinal numbers 189
Characterization of the ordinal assignment 193
Characterization of the ordinals 194
Ordinal recursion 197
Ordinal addition, multiplication 197
von Neumann cardinals 198
The operation ? 200
The cumulative rank hierarchy 201
Problems for Chapter 12 203
The operation ?α 205
Strongly inaccessible cardinals 206
Frege cardinals 206
Quotients of equivalence conditions 207
A.The real numbers 209
Congruences 209
Fields 211
Ordered Fields 212
Uniqueness of the rationals 214
Existence of the rationale 215
Countable, dense, linear orderings 219
The archimedean property 221
Nested interval property 226
Dedekind cuts 229
Existence of the real numbers 231
Uniqueness of the real numbers 234
Problems for Appendix A 236
B.Axioms and universes 239
Set universes 242
Propositions and relativizations 243
Rieger universes 248
Rieger’s Theorem 248
Antifoundation Principle, AFA 254
Bisimulations 255
The antifounded universe 259
Aczel’s Theorem 259
Problems for Appendix B 262
Index 267