电子商务推荐系统导论PDF电子书下载
- 电子书积分:9 积分如何计算积分?
- 作 者:伍之昂,曹杰著
- 出 版 社:北京:科学出版社
- 出版年份:2014
- ISBN:9787030422651
- 页数:192 页
第1章 引论 1
1.1 推荐系统概述 1
1.1.1 推荐系统:动机与现状 1
1.1.2 电子商务:推荐系统最重要的应用领域 2
1.1.3 推荐系统:形式化建模 3
1.2 推荐系统研究概览 5
1.2.1 挑战性问题 5
1.2.2 本书组织结构 9
参考文献 10
第2章 传统推荐模型与算法 12
2.1 协同过滤模型 12
2.1.1 基于用户的协同过滤 12
2.1.2 基于项目的协同过滤 14
2.1.3 相似度计算方法 15
2.1.4 混合型协同过滤 17
2.1.5 一个例子 18
2.2 基于内容的推荐模型 19
2.2.1 项目和用户表示 19
2.2.2 用户兴趣学习模型 21
2.3 潜在语义分析模型 23
2.3.1 奇异值分解模型 25
2.3.2 概率潜在语义分析模型 27
2.3.3 潜在狄利克雷分配模型 29
2.4 基于关联规则挖掘的推荐 30
2.4.1 频繁模式与关联规则挖掘 31
2.4.2 基于关联规则的推荐 32
参考文献 33
第3章 情境推荐模型与算法 35
3.1 推荐系统情境信息 35
3.1.1 什么是情境信息 35
3.1.2 情境信息的层次式表征 36
3.2 融合情境信息的推荐模型 37
3.2.1 情境预过滤 38
3.2.2 情境后过滤 41
3.2.3 情境化建模 41
3.2.4 三类范式的混合使用 44
3.3 基于时空信息的推荐模型 44
3.3.1 考虑用户兴趣漂移的推荐 45
3.3.2 移动推荐 48
3.4 基于隐反馈信息的推荐模型 57
参考文献 59
第4章 社会化推荐模型与算法 63
4.1 社会计算与社会化推荐 63
4.1.1 社会计算研究议题概览 63
4.1.2 社会化推荐 67
4.2 社会化协同过滤模型 68
4.2.1 基于信任关系的社会化协同过滤 69
4.2.2 基于矩阵分解的社会化协同过滤 71
4.3 社会化标签系统中的推荐 75
4.3.1 社会化标签系统概述 75
4.3.2 基于社会化标签的多模式推荐 77
4.4 链路预测 83
4.4.1 基于拓扑结构信息的链路预测 83
4.4.2 基于节点信息的链路预测 84
4.5 作者协作关系网络中的推荐 86
4.5.1 专家推荐 87
4.5.2 论文推荐 88
4.6 社会化推荐领域的挑战性问题 89
参考文献 91
第5章 推荐系统评价指标与方法 97
5.1 评价任务概述 97
5.2 评价指标 98
5.2.1 准确性指标 98
5.2.2 准确度以外的指标 103
5.3 实验数据集 106
5.3.1 一般性评分数据集 106
5.3.2 融合社会网络的数据集 107
5.4 评价方法 109
5.4.1 在线评价 109
5.4.2 离线评价 110
5.5 总结 110
参考文献 111
第6章 推荐系统可信性与安全性 113
6.1 托攻击概述 113
6.1.1 托攻击模型 113
6.1.2 托攻击分类 115
6.2 托攻击危害性衡量指标与脆弱性分析 117
6.2.1 托攻击危害性指标 117
6.2.2 托攻击脆弱性分析 118
6.3 托攻击检测特征指标与特征选择 120
6.3.1 托攻击检测特征指标 120
6.3.2 托攻击检测指标特征选择 122
6.4 托攻击检测算法 124
6.4.1 监督学习模型 124
6.4.2 无监督学习模型 127
6.4.3 半监督学习模型 130
6.5 托攻击检测算法评价方法 132
6.5.1 仿真实验 132
6.5.2 真实案例分析 133
6.6 群组攻击 134
6.6.1 严格版本的群组攻击构建算法 135
6.6.2 松弛版本的群组攻击构建算法 136
6.7 未来的研究方向 138
参考文献 139
第7章 电子商务推荐系统与企业绩效 142
7.1 电子商务企业绩效对推荐系统的影响 142
7.1.1 电子商务企业绩效的长尾效应 142
7.1.2 长尾分布、齐普夫定律和幂律分布 143
7.1.3 长尾效应对推荐系统设计的思考 144
7.2 多样化推荐系统设计 146
7.2.1 多样性的定义 146
7.2.2 重排序技术 148
7.2.3 基于主题多样性的推荐 149
7.3 推荐系统冷启动问题 150
7.3.1 冷启动问题概述 150
7.3.2 种子项目选择方法 151
7.4 总结 154
参考文献 155
第8章 电子商务推荐系统架构设计 156
8.1 商用推荐系统概述 156
8.1.1 通用框架 156
8.1.2 数据类型 157
8.1.3 用户画像 159
8.2 推荐系统案例分析 161
8.2.1 Amazon推荐系统 162
8.2.2 Netflix推荐系统 163
8.2.3 Hulu推荐系统 165
8.3 基于Web日志的推荐 167
8.3.1 Web使用挖掘技术 167
8.3.2 Google新闻推荐系统 171
参考文献 172
第9章 下一代推荐系统研究展望 174
9.1 大数据的挑战 174
9.1.1 大数据计算 174
9.1.2 大数据计算对推荐系统基础架构的变革 175
9.2 推荐系统研究议题展望 179
9.2.1 隐私保护 179
9.2.2 基于位置的推荐 180
9.2.3 群组推荐 181
9.2.4 基于演化计算的推荐模型 182
参考文献 182
索引 186
- 《电子测量与仪器》人力资源和社会保障部教材办公室组织编写 2009
- 《少儿电子琴入门教程 双色图解版》灌木文化 2019
- 《物联网导论》张翼英主编 2020
- 《材料导论》张会主编 2019
- 《化工传递过程导论 第2版》阎建民,刘辉 2020
- 《商务英语口译教程 第3版》朱佩芬,徐东风编著 2017
- 《实用商务英语听说 第1册》窦琳,江怡平主编 2019
- 《英语实训教程 第2册 商务英语听说》盛湘君总主编 2019
- 《通信电子电路原理及仿真设计》叶建芳 2019
- 《电子应用技术项目教程 第3版》王彰云 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《《走近科学》精选丛书 中国UFO悬案调查》郭之文 2019
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《中医骨伤科学》赵文海,张俐,温建民著 2017
- 《美国小学分级阅读 二级D 地球科学&物质科学》本书编委会 2016
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019
- 《强磁场下的基础科学问题》中国科学院编 2020
- 《小牛顿科学故事馆 进化论的故事》小牛顿科学教育公司编辑团队 2018
- 《小牛顿科学故事馆 医学的故事》小牛顿科学教育公司编辑团队 2018
- 《高等院校旅游专业系列教材 旅游企业岗位培训系列教材 新编北京导游英语》杨昆,鄢莉,谭明华 2019