多主体强化学习协作策略研究PDF电子书下载
- 电子书积分:9 积分如何计算积分?
- 作 者:孙若莹,赵刚著
- 出 版 社:北京:清华大学出版社
- 出版年份:2014
- ISBN:9787302368304
- 页数:164 页
Chapter 1 Introduction 1
1.1 Reinforcement Learning 1
1.1.1 Generality of Reinforcement Learning 1
1.1.2 Reinforcement Learning on Markov Decision Processes 3
1.1.3 Integrating Reinforcement Learning into Agent Architecture 5
1.2 Multiagent Reinforcement Learning 7
1.2.1 Multiagent Systems 7
1.2.2 Reinforcement Learning in Multiagent Systems 11
1.2.3 Learning and Coordination in Multiagent Systems 13
1.3 Ant System for Stochastic Combinatorial Optimization 16
1.3.1 Ants Forage Behavior 16
1.3.2 Ant Colony Optimization 17
1.3.3 MAX-MIN Ant System 19
1.4 Motivations and Consequences 20
1.5 Book Summary 22
Bibliography 23
Chapter 2 Reinforcement Learning and Its Combination with Ant Colony System 28
2.1 Introduction 28
2.2 Investigation into Reinforcement Learning and Swarm Intelligence 31
2.2.1 Temporal Differences Learning Method 31
2.2.2 Active Exploration and Experience Replay in Reinforcement Learning 32
2.2.3 Ant Colony System for Traveling Salesman Problem 36
2.3 The Q-ACS Multiagent Learning Method 39
2.3.1 The Q-ACS Learning Algorithm 39
2.3.2 Some Properties of the Q-ACS Learning Method 40
2.3.3 Relation with Ant-Q Learning Method 41
2.4 Simulations and Results 42
2.5 Conclusions 43
Bibliography 44
Chapter 3 Multiagent Learning Methods Based on Indirect Media Information Sharing 47
3.1 Introduction 47
3.2 The Multiagent Learning Method Considering Statistics Features 49
3.2.1 Accelerated K-certainty Exploration 49
3.2.2 The T-ACS Learning Algorithm 50
3.3 The Heterogeneous Agents Learning 52
3.3.1 The D-ACS Learning Algorithm 52
3.3.2 Some Discussions about the D-ACS Learning Algorithm 53
3.4 Comparisons with Related State-of-the-arts 54
3.5 Simulations and Results 57
3.5.1 Experimental Results on Hunter Game 57
3.5.2 Experimental Results on Traveling Salesman Problem 61
3.6 Conclusions 66
Bibliography 67
Chapter 4 Action Conversion Mechanism in Multiagent Reinforcement Learning 71
4.1 Introduction 71
4.2 Model-Based Reinforcement Learning 72
4.2.1 Dyna-Q Architecture 74
4.2.2 Prioritized Sweeping Method 75
4.2.3 Minimax Search and Reinforcement Learning 76
4.2.4 RTP-Q Learning 77
4.3 The Q-ac Multiagent Reinforcement Learning 78
4.3.1 Task Model 79
4.3.2 Converting Action 79
4.3.3 Multiagent Cooperation Methods 80
4.3.4 Q-value Update 82
4.3.5 The Q-ac Learning Algorithm 83
4.3.6 Using Adversarial Action Instead of ε Probability Exploration 84
4.4 Simulations and Results 84
4.5 Conclusions 87
Bibliography 88
Chapter 5 Multiagent Learning Approaches Applied to Vehicle Routing Problems 91
5.1 Introduction 91
5.2 Related State-of-the-arts 92
5.2.1 Some Heuristic Algorithms 92
5.2.2 The Vehicle Routing Problem with Time Windows 97
5.3 The Multiagent Learning Applied to CVRP and VRPTW 99
5.4 Simulations and Results 100
5.5 Conclusions 103
Bibliography 103
Chapter 6 Muitiagent learning Methods Applied to Multicast Routing Problems 107
6.1 Introduction 107
6.2 Multiagent Q-learning Applied to the Network Routing 110
6.2.1 Investigation into Q-routing 110
6.2.2 AntNet Investigation 111
6.3 Some Multicast Routing in Mobile Ad Hoc Networks 112
6.4 The Multiagent Q-learning in the Q-MAP Multicast Routing Method 118
6.4.1 Overview of the Q-MAP Multicast Routing 118
6.4.2 Join Query Packet,Join Reply Packet and Membership Maintenance 119
6.4.3 Convergence Proof of Q-MAP Method 122
6.5 Simulations and Results 124
6.6 Conclusions 128
Bibliography 129
Chapter 7 Multiagent Reinforcement Learning for Supply Chain Management 133
7.1 Introduction 133
7.2 Related Issues of Supply Chain Management 134
7.3 SCM Network Scheme with Multiagent Reinforcement Learning 139
7.3.1 SCM with Multiagent 139
7.3.2 The RL Agents in SCM Network 140
7.4 Application of the Q-ACS Method to SCM 142
7.4.1 The Application Model in SCM 142
7.4.2 The Q-ACS Learning Applied to the SCM System 144
7.5 Conclusion 147
Bibliography 147
Chapter 8 Multiagent Learning Applied in Supply Chain Ordering Management 152
8.1 Introduction 152
8.2 Supply Chain Management Model 155
8.3 The Multiagent Learning Model for SC Ordering Management 156
8.4 Simulations and Results 159
8.5 Conclusions 161
Bibliography 162
- 《红色旅游的社会效应研究》吴春焕著 2019
- 《汉语词汇知识与习得研究》邢红兵主编 2019
- 《生物质甘油共气化制氢基础研究》赵丽霞 2019
- 《东北民歌文化研究及艺术探析》(中国)杨清波 2019
- 《联吡啶基钌光敏染料的结构与性能的理论研究》李明霞 2019
- 《异质性条件下技术创新最优市场结构研究 以中国高技术产业为例》千慧雄 2019
- 《《国语》和《战国策》词汇比较研究》陈长书著 2017
- 《中国制造业绿色供应链发展研究报告》中国电子信息产业发展研究院 2019
- 《信息系统安全技术管理策略 信息安全经济学视角》赵柳榕著 2020
- 《行政保留研究》门中敬著 2019
- 《中风偏瘫 脑萎缩 痴呆 最新治疗原则与方法》孙作东著 2004
- 《水面舰艇编队作战运筹分析》谭安胜著 2009
- 《王蒙文集 新版 35 评点《红楼梦》 上》王蒙著 2020
- 《TED说话的力量 世界优秀演讲者的口才秘诀》(坦桑)阿卡什·P.卡里亚著 2019
- 《燕堂夜话》蒋忠和著 2019
- 《经久》静水边著 2019
- 《魔法销售台词》(美)埃尔默·惠勒著 2019
- 《微表情密码》(波)卡西亚·韦佐夫斯基,(波)帕特里克·韦佐夫斯基著 2019
- 《看书琐记与作文秘诀》鲁迅著 2019
- 《酒国》莫言著 2019
- 《大学计算机实验指导及习题解答》曹成志,宋长龙 2019
- 《指向核心素养 北京十一学校名师教学设计 英语 七年级 上 配人教版》周志英总主编 2019
- 《大学生心理健康与人生发展》王琳责任编辑;(中国)肖宇 2019
- 《大学英语四级考试全真试题 标准模拟 四级》汪开虎主编 2012
- 《大学英语教学的跨文化交际视角研究与创新发展》许丽云,刘枫,尚利明著 2020
- 《北京生态环境保护》《北京环境保护丛书》编委会编著 2018
- 《复旦大学新闻学院教授学术丛书 新闻实务随想录》刘海贵 2019
- 《大学英语综合教程 1》王佃春,骆敏主编 2015
- 《大学物理简明教程 下 第2版》施卫主编 2020
- 《指向核心素养 北京十一学校名师教学设计 英语 九年级 上 配人教版》周志英总主编 2019