当前位置:首页 > 社会科学
应用统计学丛书·结构方程模型  Mplus与应用  英文版
应用统计学丛书·结构方程模型  Mplus与应用  英文版

应用统计学丛书·结构方程模型 Mplus与应用 英文版PDF电子书下载

社会科学

  • 电子书积分:15 积分如何计算积分?
  • 作 者:王济川,王小倩著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2012
  • ISBN:9787040348286
  • 页数:453 页
图书介绍:本书与Wiley合作出版。本书的国内版列入《应用统计学丛书》。本书以通俗易懂的方式系统地阐述结构方程模型的基本概念和统计原理,侧重各种结构方程模型的实际运用。本书采用国际著名SEM软件Mplus,使用真实数据来演示各种常见的以及某些新近发展起来的较高级的结构方程模型,提供相应的Mplus程序,并详细解读程序输出结果。参照本书提供的例题和相应的计算机程序,读者便能自己实践各种SEM模型。本书可作为大学社会科学及公共卫生学院研究生以及统计和生物统计专业本科生教材,也可作为相关学科的研究人员从事统计分析的工具书。
《应用统计学丛书·结构方程模型 Mplus与应用 英文版》目录

1 Introduction 1

1.1 Model formulation 2

1.1.1 Measurement model 4

1.1.2 Structural model 6

1.1.3 Model formulation in equations 7

1.2 Model identification 11

1.3 Model estimation 14

1.4 Model evaluation 17

1.5 Model modification 23

1.6 Computer programs for SEM 24

Appendix 1.A Expressing variances and covariances among observed variables as functions of model parameters 25

Appendix 1.B Maximum likelihood function for SEM 27

2 Confirmatory factor analysis 29

2.1 Basics of CFA model 30

2.2 CFA model with continuous indicators 42

2.3 CFA model with non-normal and censored continuous indicators 58

2.3.1 Testing non-normality 58

2.3.2 CFA model with non-normal indicators 59

2.3.3 CFA model with censored data 65

2.4 CFA model with categorical indicators 68

2.4.1 CFA model with binary indicators 69

2.4.2 CFA model with ordered categorical indicators 77

2.5 Higher order CFA model 78

Appendix 2.A BSI-18 instrument 86

Appendix 2.B Item reliability 86

Appendix 2.C Cronbach's alpha coefficient 88

Appendix 2.D Calculating probabilities using PROBIT regression coefficients 88

3 Structural equations with latent variables 90

3.1 MIMIC model 90

3.2 Structural equation model 119

3.3 Correcting for measurement errors in single indicator variables 130

3.4 Testing interactions involving latent variables 134

Appendix 3.A Influence of measurement errors 139

4 Latent growth models for longitudinal data analysis 141

4.1 Linear LGM 142

4.2 Nonlinear LGM 157

4.3 Multi-process LGM 183

4.4 Two-part LGM 188

4.5 LGM with categorical outcomes 196

5 Multi-group modeling 207

5.1 Multi-group CFA model 208

5.1.1 Multi-group first-order CFA 212

5.1.2 Multi-group second-order CFA 245

5.2 Multi-group SEM model 268

5.3 Multi-group LGM 278

6 Mixture modeling 289

6.1 LCA model 290

6.1.1 Example of LCA 296

6.1.2 Example of LCA model with covariates 309

6.2 LTA model 318

6.2.1 Example of LTA 320

6.3 Growth mixture model 340

6.3.1 Example of GMM 342

6.4 Factor mixture model 365

Appendix 6.A Including covariate in the LTA model 375

7 Sample size for structural equation modeling 391

7.1 The rules of thumb for sample size needed for SEM 391

7.2 Satorra and Saris's method for sample size estimation 393

7.2.1 Application of Satorra and Saris's method to CFA model 394

7.2.2 Application of Satorra and Saris's method to LGM 401

7.3 Monte Carlo simulation for sample size estimation 405

7.3.1 Application of Monte Carlo simulation to CFA model 406

7.3.2 Application of Monte Carlo simulation to LGM 412

7.3.3 Application of Monte Carlo simulation to LGM with covariate 415

7.3.4 Application of Monte Carlo simulation to LGM with missing values 417

7.4 Estimate sample size for SEM based on model fit indices 422

7.4.1 Application of MacCallum,Browne and Sugawara's method 423

7.4.2 Application of Kim's method 424

References 429

Index 447

返回顶部