《微积分题库 再版》PDF下载

  • 购买积分:23 如何计算积分?
  • 作  者:美国教育协会著;蓝建群译
  • 出 版 社:台湾:晓园出版社
  • 出版年份:1995
  • ISBN:7506217724
  • 页数:889 页
图书介绍:

1.不等式(Inequality) 1

2.绝对值(Absolute Values) 9

3.极限(Limits) 17

4.连续性(Continuity) 25

5.导数△一方法(Derivative △-Method) 29

6.代数函数微分法(Differentiation Of Algebraic Functions) 41

7.三角函数微分法(Differentiation Of Trigonometrie Functions) 67

8.反三角函数微分法(Differentiation Of Inverse Trigonometric Function 92) 81

9.指数及对数函数微分法(Differentiation Of Exponential And Logarithmic Functions 108) 95

10.双曲线函数微分法(Differentiation Of Hyperbolic Functions) 109

11.隐微分(ImpLlicit Differentiation) 113

12.参数方程式(Paramentric Equations) 125

13.不定式(Indeterminate Forms) 131

14.切线与法线(Tangents And Normals) 161

15.极大与极小值(Maximum And Minimum Values) 183

16.极大与极小应用问题(Applied Problems In Maxima And Mini-ma) 203

17.曲线轨迹法(Curve Tracing) 243

18.曲率求法(Curvature) 265

19.相关变率求法(Related Rates) 277

20.微分量求法(Differentials) 307

21.偏导数(Partial Derivatives) 317

22.全微分、全导数及其应用(Total Differentials,Total Deriva-tives,And Applied Problems) 339

23.基本积分法(Fundamental Integration) 355

24.三角积分法(Trigonometric Integrals) 391

25.部份分式积分法(Integration By Partial Fractions) 423

26.三角代入积分法(Trigonometric Substitutions) 441

27.部份积分法(Integration By Parts) 457

28.瑕积分(Improper Integrals) 467

29.弧长求法(Arc Length) 479

30.平面面积求法(Plane Areas) 489

31.立体:体积与面积(Solids:Volumes And Areas) 519

32.形心求法(Centroids) 551

33.惯性矩求法(Moments Of Inertia) 565

34.二重/迭次积分(Double/Iterated Integrals) 577

35.三重积分(Triple Integrals) 609

36.具可变密度之质量求法(Masses Of Variable Density) 625

37.级数(Series) 637

38.中值定理(The Law Of The Mean) 669

39.直线与曲线运动(Motion:Rectilinear And Curvilinear) 675

40.高等积分法(Advanced Integration Methods) 719

41.初等微分方程(Basic Differential Equations) 755

42.高等微分方程(Advanced Differential Equations) 777

43.微分方程之应用问题(Applied Problems In Differential Equations) 797

44.流体压力及作用力之计算(Fluid Pressures/Forces) 851

45.功与能(Work/Energy) 857

46.电(Electricity) 873