第一章 引言 4
1.1Schrodinger方程 4
1.2原子单位 7
1.3变分原理 9
1.4Schr?dinger方程的矩阵表示 12
1.5微扰理论 13
第二章 对称性 17
2.1引言 17
2.2群论 18
2.3群论及Schr?dinger方程 27
2.4投影算符 29
2.5电子置换对称性、Pauli原理 30
2.6空间对称性 33
2.7自旋对称性 41
第三章 轨道近似 46
3.1引言 46
3.2Hartme-Fock理论 50
3.3受限制的Har~-Fock模型 59
3.4Koopman定理 65
3.5Brillouin定理 67
3.6不受限制的和推广的Hartree-Fock模型 70
第四章 轨道近似的进一步发展 76
4.1电子相关效应 76
4.2组态相互作用 80
4.3用微扰法处理电子相关作用 83
4.4甲烷和氟中的电子相关效应 89
4.5相对论校正 93
第五章 轨道的表示法 97
5.1Hartree-Fock理论的矩阵表达方式 97
5.2原子轨道 101
5.3LCAO-MO方法 104
5.4Slater型分子轨道 104
5.5Gauss型分子轨道 107
5.6最小基 115
5.7双ζ基和扩大的基 119
5.8激发态 123
5.9浮动球形Gauss轨道模型 129
第六章 电子分布 134
6.1单电子密度函数 135
6.2单电子性质 142
6.3电荷密度图 147
6.4定域轨道 155
6.5集居分析 176
6.6轨道能量和原子电荷 190
第七章 化学键 201
7.1Virial定理 201
7.2离域和收缩 204
7.3构象变化 221
参考文献 229
索引 238