第一章 计量与误差概论 1
第一节 计量常识 1
一、名词概念 1
二、计量单位及单位制 3
三、计量器具与计量基准、标准 4
四、量值传递 5
五、国际计量机构 7
第二节 法定计量单位 8
一、我国的法定计量单位 8
二、国际单位制的构成原则 10
三、国际单位制的优越性 11
四、国际单位制的内容 13
五、我国推行法定计量单位的目标和要求 16
六、我国法定计量单位的使用规则及方法 17
第三节 计量检定人员的素养 21
第四节 计量器具指标、特性的常用术语 21
第五节 测量及其分类 24
一、检定与测试 25
二、等精度测量与不等精度测量 25
三、绝对测量与相对测量 25
四、静态测量与动态测量 26
五、主动测量与被动测量 26
六、单项测量与综合测量 26
七、直接测量、间接测量与组合测量 27
第六节 测量误差及其分类 30
一、误差存在的普遍性 30
二、测量对象自身的缺陷与真值的抽象性 30
三、测量误差的分类 31
四、系统误差与随机误差的关系 33
五、误差的表达形式 34
第七节 测量精度及其与误差的关系 36
一、精密度 36
二、正确度 36
三、准确度(精确度) 37
二、有效数字 38
一、计量检测中的数 38
第八节 计量数据及其运算规则 38
三、数据有效位数的选定 39
四、数据的表示方法 40
五、数字的取舍规则 41
六、数据运算规则 41
第二章 与计量误差有关的概率论知识 45
第一节 概率的概念及有关定理 45
一、概率论研究的对象 45
二、常用术语 45
三、概率的概念 46
四、概率加法定理 47
五、概率乘法定理 48
第二节 随机变量及其分类 50
一、离散型随机变量的分布列 51
第三节 离散型随机变量 51
二、离散型随机变量的分布函数 52
第四节 连续型随机变量 53
一、频率表、频率直方图和累积频率图 53
二、概率分布密度 54
三、连续型随机变量的分布函数 56
第五节 数学期望 57
一、算术平均值与数学期望 57
二、随机变量的数学期望 58
一、方差的概念 59
三、数学期望的性质 59
第六节 方差 59
二、随机变量的方差与标准偏差 60
三、方差的性质 61
第三章 等精度直接测量的数据处理 62
第一节 随机误差与正态分布 62
第二节 算术平均值与真值 65
第三节 标准偏差(均方差)σ 65
一、标准偏差与一列测量数据的关系 66
二、标准偏差的意义 66
第四节 置信区间与置信概率 67
一、误差区间与相应的概率 67
三、标准偏差的估计值σ 67
二、置信区间与置信概率 69
第五节 极限误差的概念 70
第六节 正态分布概率数值表的应用 71
第七节 标准偏差σ的求取 73
一、贝塞尔(Bessel)法 73
二、佩特斯(Πletepc)法 74
三、极差法 76
四、最大误差法 77
五、最大残差法 78
第八节 算术平均值的标准偏差与合理的测量次数 79
一、算术平均值的标准偏差 79
二、合理的测量次数 81
第九节 t-分布 82
第十节 粗差的剔除 85
一、拉伊达(Pa?ta)准则(36准则) 85
二、肖维勒(Chauvenet)准则 87
三、格拉布斯(Grubbs)准则 89
四、t检验准则 90
五、狄克逊(Dixon)准则 91
第十一节 算术平均值和标准偏差的简便计算法 93
一、算术平均值的简便计算法 93
二、标准偏差的简便计算法 94
第十二节 等精度直接测量的数据处理 97
二、t-分布与正态分布的比较 100
三、测量次数的选择 100
第十三节 几个具体问题的讨论 100
一、日常检定中σ的计算 100
四、极限误差与随机不确定度 101
五、测量结果的表示形式 101
第十四节 其它分布 101
第四章 系统误差 104
第一节 系统误差的性质及分类 104
一、性质 104
二、分类 105
第二节 系统误差存在与否的判断 107
一、残差判断法 107
二、统计检验法 110
第三节 系统误差的消除 112
三、数据比较法 112
一、修正法 113
二、误差根源的消除 113
三、消除系统误差的典型测量方法 113
第四节 变化系统误差的研究方法 119
一、理论分析法 119
二、实验解析法 119
三、估计法 119
第五章 恒定系统误差的修正及修正值 121
第一节 测量误差与计量器具示值误差 121
一、测量误差 121
三、量具示值误差(量具误差) 122
二、计量仪器 示值误差 122
第二节 误差的修正及修正值 123
一、测量结果的修正值 124
二、计量仪器示值的修正值 124
三、量具的修正值 124
第三节 误差与修正值的计算示例 125
第六章 间接测量的数据处理 128
第一节 间接测量误差的传递 128
一、简单函数关系 129
二、复合函数关系 130
三、多元函数关系 131
一、按加减关系进行的间接测量的恒定系统误差传递 132
第二节 间接测量恒定系统误差的计算 132
二、按乘法关系进行的间接测量的恒定系统误差传递 133
三、按除法关系进行的间接测量的恒定系统误差传递 134
四、按幂函数关系进行的间接测量的恒定系统误差传递 134
五、按对数函数关系进行的间接测量的恒定系统误差传递 135
第三节 间接测量随机误差的计算 135
一、按加减关系进行的间接测量的随机误差传递 135
二、按乘除关系进行的间接测量的随机误差传递 136
三、按倍数关系进行的间接测量的随机误差传递 136
四、按线性函数关系进行的间接测量的随机误差传递 136
五、按一般单元函数关系进行的间接测量的随机误差传递 136
一、间接测量中系统误差限的计算 137
二、间接测量的不确定度的合成 137
第四节 间接测量中系统误差限的计算与不确定度的合成 137
第五节 间接测量的数据处理 138
第七章 不等精度测量的数据处理 142
第一节 权的概念及求法 142
一、问题的提出 142
二、权的定义 142
三、权的性质与求法 143
第二节 加权算术平均值及其标准偏差 145
一 、加权算术平均值? 145
二、加权算术平均值的标准偏差? 145
第三节 不等精度测量的数据处理 149
第一节 最小二乘法原理 151
第八章 组合测量的数据处理 151
第二节 最小二乘法原理在组合测量中的应用 153
第三节 组合测量中法方程组的建立 155
第四节 法方程组的高斯解法 159
第五节 组合测量的精度 165
第九章 误差分析 170
第一节 误差因素的分析 170
一、测量装置的误差 170
二、测量环境与条件变化所造成的误差 171
三、测量原理及方法误差 171
四、人为误差 172
一、已知恒定误差的合成 175
二、系统误差限的合成 175
第二节 误差的合成 175
三、随机不确定度的合成 176
四、系统误差限与随机不确定度的合成 176
五、准确度的求法 177
第三节 误差分析的步骤及注意事项 180
第四节 国际计量局关于表述不确定度的建议 182
第十章 误差理论的应用与计量器具的选择 184
第一节 测量条件的研究 184
一、合理测量条件的选择 184
二、误差分配 187
三、测量方案的选择 188
四、合理测量次数的确定 189
第二节 直线的拟合 189
一、测量方法极限误差与计量器具误差的关系 191
第三节 测量方法及计量器具的选择 191
二、测量方法极限误差与被测参数公差的关系 192
三、比较检定时的高、低精度标准器的检定极限误差的关系 193
四、比对检定时的标准仪器误差与受检仪器误差的关系 193
附录1 国际计量局《国际单位制》(第四版)的主要内容介绍 195
附录2 几个公式的推导 199
一、正态分布概率密度方程式 199
二、贝塞尔公式 201
三、佩特斯公式 202
附录3 正态分布概率数值表 202
附录4 t-分布的系数tp(k)数值表 206
附录5 常用测量近似计算公式 206
参考文献 208