《数字视频处理》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:(美)(A.M.泰卡尔普)A.Murat Tekalp著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:1998
  • ISBN:730202927X
  • 页数:528 页
图书介绍:内容简介 数字视频是用数字手段提供全运动视频图象的高新技术,近十 余年来推助了多媒体,虚拟现实,视频通信,VCD等产业的飞速发 展;在即将来临的信息社会中,还将给计算机,通信,影象等产业 以巨大的推动。为帮助读者在未来破浪前进,这本及时问世的书首 次全面讲述了数字视频处理的原理以及面向各种应用的主要算法。 全书分为6个部分:数字视频表示,包括视频图象模型和空域一时 域采样;二维运动估计;三维运动估计;视频滤波;静图象压缩; 视频压缩。本书是在为研究主和高年级学生讲课星础上写成的,取 材全面系统,表述精练,插图丰富并有详尽的文献索引,对于所用 的数学原理,作者进行了仔细处理和精心安排,特别便于自学。

Ⅰ REPRESENTATION OF DIGITAL VIDEO 1

1 BASICS OF VIDEO 1

1.1 Analog Video 1

1.1.1 Analog Video Signal 2

1.1.2 Analog Video Standards 4

1.1.3 Analog Video Equipment 8

1.2 Digital Video 9

1.2.1 Digital Video Signal 9

1.2.2 Digital Video Standards 11

1.2.3 Why Digital Video? 14

1.3 Digital Video Processing 16

Preface 17

About the Author 19

2 TIME-VARYING IMAGE FORMATION MODELS 19

2.1 Three-Dimensional Motion Models 20

2.1.1 Rigid Motion in the Cartesian Coordinates 20

About the Notation 21

2.1.2 Rigid Motion in the Homogeneous Coordinates 26

2.1.3 Deformable Motion 27

2.2 Geometric Image Formation 28

2.2.1 Perspective Projection 28

2.2.2 Orthographic Projection 30

2.3.1 Lambertian Reflectance Model 32

2.3 Photometric Image Formation 32

2.3.2 Photometric Effects of 3-D Motion 33

2.4 Observation Noise 33

2.5 Exercises 34

3 SPATIO-TEMPORAL SAMPLING 36

3.1 Sampling for Analog and Digital Video 37

3.1.1 Sampling Structures for Analog Video 37

3.1.2 Sampling Structures for Digital Video 38

3.2 Two-Dimensional Rectangular Sampling 40

3.2.1 2-D Fourier Transform Relations 41

3.2.2 Spectrum of the Sampled Signal 42

3.3 Two-Dimensional Periodic Sampling 43

3.3.1 Sampling Geometry 44

3.3.2 2-D Fourier Transform Relations in Vector Form 44

3.3.3 Spectrum of the Sampled Signal 46

3.4 Sampling on 3-D Structures 46

3.4.1 Sampling on a Lattice 47

3.4.2 Fourier Transform on a Lattice 47

3.4.3 Spectrum of Signals Sampled on a Lattice 49

3.4.4 Other Sampling Structures 51

3.5 Reconstruction from Samples 53

3.5.1 Reconstruction from Rectangular Samples 53

3.5.2 Reconstruction from Samples on a Lattice 55

3.6 Exercises 56

4 SAMPLING STRUCTURE CONVERSION 57

4.1 Sampling Rate Change for 1-D Signals 58

4.1.1 Interpolation of 1-D Signals 58

4.1.2 Decimation of 1-D Signals 62

4.1.3 Sampling Rate Change by a Rational Factor 64

4.2 Sampling Lattice Conversion 66

4.3 Exercises 70

Ⅱ TWO-DIMENSIONAL MOTION ESTIMATION 72

5 OPTICAL FLOW METHODS 72

5.1 2-D Motion vs.Apparent Motion 72

5.1.1 2-D Motion 73

5.1.2 Correspondence and Optical Flow 74

5.2 2-D Motion Estimation 76

5.2.1 The Occlusion Problem 78

5.2.2 The Aperture Problem 78

5.2.3 Two-Dimensional Motion Field Models 79

5.3 Methods Using the Optical Folw Equation 81

5.3.1 The Optical Flow Equation 81

5.3.2 Second-Order Differentail Methods 82

5.3.3 Block Motion Model 83

5.3.4 Horn and Schunck Method 84

5.3.5 Estimation of the Gradients 85

5.3.6 Adaptive Methods 86

5.4 Examples 88

5.5 Exercises 93

6 BLOCK-BASED METHODS 95

6.1 Block-Motion Models 95

6.1.1 Translational Block Motion 96

6.1.2 Generalized/Deformable Block Motion 97

6.2 Phase-Correlation Method 99

6.2.1 The Phase-Correlation Function 99

6.2.2 Implementation Issues 100

6.3 Block-Matching Method 101

6.3.1 Matching Criteria 102

6.3.2 Search Procedures 104

6.4 Hierarchical Motion Estimation 106

6.5 Generalized Block-Motion Estimation 109

6.5.1 Postprocessing for Improved Motion Compensation 109

6.5.2 Deformable Block Matching 109

6.6 Examples 112

6.7 Exercises 115

7 PEL-RECURSIVE METHODS 117

7.1 Displaced Frame Difference 118

7.2 Gradient-Based Optimization 119

7.2.1 Steepest-Descent Method 120

7.2.2 Newton-Raphson Method 120

7.3 Steepest-Descent-Based Algorithms 121

7.2.3 Local vs.Global Minima 121

7.3.1 Netravali-Robbins Algorithm 122

7.3.2 Walker-Rao Algorithm 123

7.3.3 Extension to the Block Motion Model 124

7.4 Wiener-Estimation-Based Algorithms 125

7.5 Examples 127

7.6 Exercises 129

8 BAYESIAN METHODS 130

8.1 Optimization Methods 130

8.1.1 Simulated Annealing 131

8.1.2 Iterated Conditional Modes 134

8.1.4 Highest Confidence First 135

8.1.3 Mean Field Annealing 135

8.2 Basics of MAP Motion Estimation 136

8.2.1 The Likelihood Model 137

8.2.2 The Prior Model 137

8.3 MAP Motion Estimation Algorithms 139

8.3.1 Formulation with Discontinuity Mode? 139

8.3.2 Estimation with Local Outlier Rejection 146

8.3.3 Estimation with Region Labeling 147

8.4 Examples 148

8.5 Exercises 150

9 METHODS USING POINT CORRESPONDENCES 152

Ⅲ THREE-DIMENSIONAL MOTION ESTIMATION AND SEGMENTATION 152

9.1 Modeling the Projected Displacement Field 153

9.1.1 Orthographic Displacement Field Model 153

9.1.2 Perspective Displacement Field Model 154

9.2 Methods Based on the Orthographic Model 155

9.2.1 Two-Step Iteration Method from Two Views 155

9.2.2 An Improved Iterative Method 157

9.3 Methods Based on the Perspective Model 158

9.3.1 The Epipolar Constraint and Essential Parameters 158

9.3.2 Estimation of the Essential Parameters 159

9.3.3 Decomposition of the E-Matrix 161

9.3.4 Algorithm 164

9.4 The Case of 3-D Planar Surfaces 165

9.4.1 The Pure Parameters 165

9.4.2 Estimation of the Pure Parameters 166

9.4.3 Estimation of the Motion and Structure Parameters 166

9.5 Examples 168

9.5.1 Numerical Simulations 168

9.5.2 Experiments with Two Frames of Miss America 173

9.6 Exercises 175

10 OPTICAL FLOW AND DIRECT METHODS 177

10.1 Modeling the Projected Velocity Field 177

10.1.1 Orthographic Velocity Field Model 178

10.1.2 Perspective Velocity Field Model 178

10.1.3 Perspective Velocity vs.Displacement Models 179

10.2 Focus of Expansion 180

10.3 Algebraic Methods Using Optical Flow 181

10.3.1 Uniqueness of the Solution 182

10.3.2 Affine Flow 182

10.3.3 Quadratic Flow 183

10.3.4 Arbitrary Flow 184

10.4 Optimization Methods Using Optical Flow 186

10.5 Direct Methods 187

10.5.1 Extension of Optical Flow-Based Methods 187

10.5.2 Tsai-Huang Method 188

10.6 Examples 190

10.6.1 Numerical Simulations 191

10.6.2 Experiments with Two Frames of Miss America 194

10.7 Exercises 196

11 MOTION SEGMENTATION 198

11.1 Direct Methods 200

11.1.1 Thresholding for Change Detection 200

11.1.2 An Algorithm Using Mapping Parameters 201

11.1.3 Estimation of Model Parameters 203

11.2 Optical Flow Segmentation 204

11.2.1 Modified Hough Transform Method 205

11.2.2 Segmentation for Layered Video Representation 206

11.2.3 Bayesian Segmentation 207

11.3 Simultaneous Estimation and Segmentation 209

11.3.1 Motion Field Model 210

11.3.2 Problem Formulation 210

11.3.3 The Algorithm 212

11.3.4 Relationship to Other Algorithms 213

11.4 Examples 214

11.5 Exercises 217

12 STEREO AND MOTION TRACKING 219

12.1 Motion and Structure from Stereo 219

12.1.1 Still-Frame Stereo Imaging 220

12.1.2 3-D Feature Matching for Motion Estimation 222

12.1.3 Stereo-Motion Fusion 224

12.1.4 Extension to Multiple Motion 227

12.2 Motion Tracking 229

12.2.1 Basic Principles 229

12.2.2 2-D Motion Tracking 232

12.2.3 3-D Rigid Motion Tracking 235

12.3 Examples 239

12.4 Exercises 241

Ⅳ VIDEO FILTERING 245

13 MOTION COMPENSATED FILTERING 245

13.1 Spatio-Temporal Fourier Spectrum 246

13.1.1 Global Motion with Constant Velocity 247

13.1.2 Global Motion with Acceleration 249

13.2.1 Sampling in the Temporal Direction Only 250

13.2 Sub-Nyquist Spatio-Temporal Sampling 250

13.2.2 Sampling on a Spatio-Temporal Lattice 251

13.2.3 Critical Velocities 252

13.3 Filtering Along Motion Trajectories 254

13.3.1 Arbitrary Motion Trajectories 255

13.3.2 Global Motion with Constant Velocity 256

13.3.3 Accelerated Motion 256

13.4.1 Motion-Compensated Noise Filtering 258

13.4.2 Motion-Compensated Reconstruction Filtering 258

13.4 Applications 258

13.5 Exercises 260

14 NOISE FILTERING 262

14.1 Intraframe Filtering 263

14.1.1 LMMSE Filtering 264

14.1.2 Adaptive(Local)LMMSE Filtering 267

14.1.3 Directional Filtering 269

14.1.4 Median and Weighted Median Filtering 270

14.2 Motion-Adaptive Filtering 270

14.2.1 Direct Filtering 271

14.2.2 Motion-Detection Based Filtering 272

14.3 Motion-Compensated Filtering 272

14.3.1 Spatio-Temporal Adaptive LMMSE Filtering 274

14.3.2 Adaptive Weighted Averaging Filter 275

14.4 Examples 277

14.5 Exercises 277

15 RESTORATION 283

15.1 Modeling 283

15.1.1 Shift-Invariant Spatial Blurring 284

15.1.2 Shift-Varying Spatial Blurring 285

15.2 Intraframe Shift-Invariant Restoration 286

15.2.1 Pseudo Inverse Filtering 286

15.2.2 Constrained Least Squares and Wiener Filtering 287

15.3 Intraframe Shift-Varying Restoration 289

15.3.1 Overview of the POCS Method 290

15.3.2 Restoration Using POCS 291

15.4 Multiframe Pestoration 292

15.4.1 Cross-Correlated Multiframe Filter 294

15.4.2 Motion-Compensated Multiframe Filter 295

15.5 Examples 295

15.6 Exercises 296

16 STANDARDS CONVERSION 302

16.1 Down-Conversion 304

16.1.1 Down-Conversion with Anti-Alias Filtering 305

16.1.2 Down-Conversion without Anti-Alias Filtering 305

16.2 Practical Up-Conversion Methods 308

16.2.1 Intraframe Filtering 309

16.2.2 Motion-Adaptive Filtering 314

16.3 Motion-Compensated Up-Conversion 317

16.3.1 Basic Principles 317

16.3.2 Global-Motion-Compensated De-interlacing 322

16.4 Examples 323

16.5 Exercises 329

17 SUPERRESOLUTION 331

17.1 Modeling 332

17.1.1 Continuous-Discrete Model 332

17.1.2 Discrete-Discrete Model 335

17.2 Interpolation-Restoration Methods 336

17.1.3 Problem Interrelations 336

17.2.1 Intraframe Methods 337

17.2.2 Multiframe Methods 337

17.3 A Frequency Domain Method 338

17.4 A Unifying POCS Method 341

17.5 Examples 343

17.6 Exercises 346

Ⅴ STILL IMAGE COMPRESSION 348

18 LOSSLESS COMPRESSION 348

18.1 Basics of Image Compression 349

18.1.1 Elements of an Image Compression System 349

18.1.2 Information Theoretic Concepts 350

18.2.1 Fixed-Length Coding 353

18.2 Symbol Coding 353

18.2.2 Huffman Coding 354

18.2.3 Arithmetic Coding 357

18.3 Lossless Compression Methods 360

18.3.1 Lossless Predictive Coding 360

18.3.2 Run-Length Coding of Bit-Planes 363

18.3.3 Ziv-Lempel Coding 364

18.4 Exercises 366

19 DPCM AND TRANSFORM CODING 368

19.1 Quantization 368

19.1.1 Nonuniform Quantization 369

19.1.2 Uniform Quantization 370

19.2 Differential Pulse Code Modulation 373

19.2.1 Optimal Prediction 374

19.2.2 Quantization of the Prediction Error 375

19.2.3 Adaptive Quantization 376

19.2.4 Delta Modulation 377

19.3 Transform Coding 378

19.3.1 Discrete Cosine Transform 380

19.3.2 Quantization/Bit Allocation 381

19.3.3 Coding 383

19.3.4 Blocking Artifacts in Transform Coding 385

19.4 Exercises 385

20 STILL IMAGE COMPRESSION STANDARDS 388

20.1 Bilevel Image Compression Standards 389

20.1.1 One-Dimensional RLC 389

20.1.2 Two-Dimensional RLC 391

20.1.3 The JBIG Standard 393

20.2 The JPEG Standard 394

20.2.1 Baseline Algorithm 395

20.2.2 JPEG Progressive 400

20.2.3 JPEG Lossless 401

20.2.4 JPEG Hierarchical 401

20.2.5 Implementations of JPEG 402

20.3 Exercises 403

21 VECTOR QUANTIZATION,SUBBAND CODING AND OTHER METHODS 404

21.1 Vector Quantization 404

21.1.1 Structure of a Vector Quantizer 405

21.1.2 VQ Codebook Design 408

21.1.3 Practical VQ Implementations 408

21.2 Fractal Compression 409

21.3 Subband Coding 411

21.3.1 Subband Decomposition 411

21.3.2 Coding of the Subbands 414

21.3.3 Relationship to Transform Coding 414

21.4 Second-Generation Coding Methods 415

21.3.4 Relationship to Wavelet Transform Coding 415

21.5 Exercises 416

Ⅵ VIDEO COMPRESSION 419

22 INTERFRAME COMPRESSION METHODS 419

22.1 Three-Dimensional Waveform Coding 420

22.1.1 3-D Transform Coding 420

22.1.2 3-D Subbband Coding 421

22.2 Motion-Compensated Waveform Coding 424

22.2.1 MC Transform Coding 424

22.2.2 MC Vector Quantization 425

22.3 Model-Based Coding 426

22.2.3 MC Subband Coding 426

22.3.1 Object-Based Coding 427

22.3.2 Knowledge-Based and Semantic Coding 428

22.4 Exercises 429

23 VIDEO COMPRESSION STANDARDS 432

23.1 The H.261 Standard 432

23.1.1 Input Image Formats 433

23.1.2 Video Multiplex 434

23.1.3 Video Compression Algorithm 435

23.2 The MPEG-1 Standard 440

23.2.1 Features 440

23.2.2 Input Video Format 441

23.2.3 Data Structure and Compression Modes 441

23.2.4 Intraframe Compression Mode 443

23.2.5 Interframe Compression Modes 444

23.2.6 MPEG-1 Encoder and Decder 447

23.3 The MPEG-2 Standard 448

23.3.1 MPEG-2 Macroblocks 449

23.3.2 Coding Interlaced Video 450

23.3.3 Scalable Extensions 452

23.3.4 Other Improvements 453

23.3.5 Overview of Profiles and Levels 454

23.4 Software and Hardware Implementations 455

24 MODEL-BASED CODING 457

24.1 General Object-Based Methods 457

24.1.1 2-D/3-D Rigid Objects with 3-D Motion 458

24.1.2 2-D Flexible Objects with 2-D Motion 460

24.1.3 Affine Transformations with Triangular Meshes 462

24.2 Knowledge-Based and Semantic Methods 464

24.2.1 General Principles 465

24.2.2 MBASIC Algorithm 470

24.2.3 Estimation Using a Flexible Wireframe Model 471

24.3 Examples 478

25 DIGITAL VIDEO SYSTEMS 486

25.1 Videoconferencing 487

25.2 Interactive Video and Multimedia 488

25.3 Digital Television 489

25.3.1 Digital Studio Standards 490

25.3.2 Hybrid Advanced TV Systems 491

25.3.3 All-Digital TV 493

25.4 Low-Bitrate Video and Videophone 497

25.4.1 The ITU Recommendation H.263 498

25.4.2 The ISO MPEG-4 Requirements 499

APPENDICES 502

A MARKOV AND GIBBS RANDOM FIELDS 502

A.1 Definitions 502

A.1.1 Markov Random Fields 503

A.1.2 Gibbs Random Fields 504

A.2 Equivalence of MRF and GRF 505

A.3 Local Conditional Probabilities 506

B BASICS OF SEGMENTATION 508

B.1 Thresholding 508

B.1.1 Finding the Optimum Threshold(s) 509

B.2 Clustering 510

B.3 Bayesian Methods 512

B.3.1 The MAP Method 513

B.3.2 The Adaptive MAP Method 515

B.3.3 Vector Field Segmentation 516

C KALMAN FILTERING 518

C.1 Linear State-Space Model 518

C.2 Extended Kalman Filtering 520