《离散数学结构 第3版》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:(美)B.科尔曼(Bernard Kolman)等著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:1997
  • ISBN:7302027668
  • 页数:524 页
图书介绍:内容简介用于计算机科学的离散数学是大学一、二年级旣难教又难学的一门课程。本书深入浅出,由简及繁,将定义和理论抽象压缩到最低限度。除仍像前两版那样以关系和有向图作为中心外,本书增加了较大的灵活性和模块性。本书11章分别为:基础;逻辑;计数;关系和有向图;函数;图论问题;有序关系及结构;树;半群和群;语言和有限状态机;群和编码。除新增一章图论外,还增加了一些新的小节如:数学结构,谓词演算,递归关系,用于计算机科学的函数,函数的序,最小生成树。附录B离散数学实验是新增加的;此外,有关递归、逻辑及验证也引入了更多的新材料,排列和组合的表达形式有了扩展,每章都增加了编码练习。本书既可作数学也可作计算机科学或计算机工程课的教材。

1 Fundamentals 1

1.1 Sets and Subsets 1

1.2 Operations on Sets 5

1.3 Sequences 14

1.4 Division in the Integers 22

1.5 Matrices 30

1.6 Mathematical Structures 39

2 Logic 46

2.1 Propositions and Logical Operations 46

2.2 Conditional Statements 52

2.3 Methods of Proof 58

2.4 Mathematical Induction 64

3 Counting 72

3.1 Permutations 72

3.2 Combinations 78

3.3 The Pigeonhole Principle 82

3.4 Elements of Probability 85

3.5 Recurrence Relations 95

4 Relations and Digraphs 101

4.1 Product Sets and Partitions 101

4.2 Relations and Digraphs 106

4.3 Paths in Relations and Digraphs 116

4.4 Properties of Relations 124

4.5 Equivalence Relations 131

4.6 Computer Representation of Relations and Digraphs 136

4.7 Manipulation of Relations 146

4.8 Transitive Closure and Warshall's Algorithm 157

5 Functions 167

5.1 Functions 167

5.2 Functions for Computer Science 177

5.3 Permutation Functions 181

5.4 Growth of Functions 190

6 Topics in Graph Theory 197

6.1 Graphs 197

6.2 Euler Paths and Circuits 204

6.3 Hamiltonian Paths and Circuits 213

6.4 Coloring Graphs 218

7 Order Relations and Structures 225

7.1 Partially Ordered Sets 225

7.2 Extremal Elements of Partially Ordered Sets 239

7.3 Lattices 246

7.4 Finite Boolean Algebras 259

7.5 Functions on Boolean Algebras 266

7.6 Boolean Functions as Boolean Polynomials 271

8 Trees 286

8.1 Trees 286

8.2 Labeled Trees 292

8.3 Tree Searching 299

8.4 Undirected Trees 310

8.5 Minimal Spanning Trees 321

9 Semigroups and Groups 329

9.1 Binary Operations Revisited 329

9.2 Semigroups 334

9.3 Products and Quotients of Semigroups 342

9.4 Groups 349

9.5 Products and Quotients of Groups 361

10 Languages and Finite-State Machines 368

10.1 Languages 368

10.2 Representations of Special Languages and Grammars 378

10.3 Finite-State Machines 391

10.4 Semigroups,Machines,and Languages 398

10.5 Machines and Regular Languages 404

10.6 Simplification of Machines 412

11 Groups and Coding 420

11.1 Coding of Binary Information and Error Detection 420

11.2 Decoding and Error Correction 432

Appendix A Algorithms and Pseudocode 444

Appendix B Experiments in Discrete Mathematics 458

Answers to Odd-Numbered Exercises 477

Index 513