集合与函数 1
1.集合 1
2.函数的概念 6
3.函数的性质 9
4.函数的图象变换 18
5.基本初等函数 27
数列 32
1.数列 32
2.等差数列 40
3.等比数列 51
4.等差数列与等比数列的综合运用 57
5.数列的经典结论 62
三角函数 66
1.任意角和弧度制 66
2.任意角的三角函数 69
3.同角三角函数的基本关系式 75
4.三角函数的诱导公式 78
5.两角和与差的三角函数公式 82
6.三角函数的积化和差、和差化积公式 87
7.三角函数的图象与性质 89
8.已知三角函数值求角 101
9.解斜三角形 106
平面上的向量 111
1.平面向量的有关概念 111
2.平面向量的线性运算(1) 114
3.平面向量的线性运算(2) 118
4.平面向量的数量积 127
5.平面向量的坐标表示 132
不等式 145
1.关于不等式的证明 145
2.解不等式的方法 152
3.含有绝对值的不等式 160
4.不等式观点下的最大(小)值问题 163
解析几何 168
1.直线的方程 168
2.两条直线的位置关系 177
3.曲线和方程 183
4.圆的方程与性质 186
5.椭圆的方程与性质 194
6.双曲线的方程与性质 200
7.抛物线的方程与性质 205
8.直线与二次曲线的关系 210
立体几何 214
1.平行问题 214
2.垂直问题 220
3.成角问题 226
4.距离问题 233
5.棱柱 242
6.棱锥 251
7.球 261
空间向量 266
1.空间向量及其运算 266
2.空间向量的坐标运算 270
3.空间角 276
4.空间距离 283
排列 组合 二项式定理 概率 289
1.计数原理 289
2.排列 294
3.组合 299
4.排列与组合的综合运用 304
5.二项式定理 307
6.概率 312
微积分 322
1.极限 322
2.导数与微分 331
3.导数的应用 336
4.积分 342
复数 348
1.复数的概念 348
2.复数的运算 356
3.复数的三角形式 361