《强化学习》PDF下载

  • 购买积分:15 如何计算积分?
  • 作  者:(荷)马可·威宁(Marco Wiering),马丁·范·奥特罗(Martijn van Otterlo)
  • 出 版 社:北京:机械工业出版社
  • 出版年份:2018
  • ISBN:9787111600220
  • 页数:464 页
图书介绍:本书共有19章,分为六大部分,详细介绍了强化学习中各领域的基本理论和最新进展,内容包括:MDP、动态规划、蒙特卡罗方法、批处理强化学习、TD学习、Q学习、策略迭代的最小二乘法、迁移学习、贝叶斯强化学习、、一阶逻辑MDP、层次式强化学习、演化计算、预测性定义状态表示、去中心化的部分可观察MDP、博弈论和多学习器强化学习等内容,并阐述强化学习与心理和神经科学、游戏领域、机器人领域的关系和应用,最后提出未来发展趋势及研究热点问题,有助于年轻的研究者了解整个强化学习领域,发现新的研究方向。本书适合作为高等院校机器学习相关课程的参考书,也可作为人工智能领域从业技术人员的参考用书。

第一部分 绪论 2

第1章 强化学习和马尔可夫决策过程 2

1.1 简介 2

1.2 时序决策 3

1.2.1 接近时序决策 4

1.2.2 在线学习与离线学习 4

1.2.3 贡献分配 5

1.2.4 探索-运用的平衡 5

1.2.5 反馈、目标和性能 5

1.2.6 表达 6

1.3 正式的框架 6

1.3.1 马尔可夫决策过程 7

1.3.2 策略 9

1.3.3 最优准则和减量 9

1.4 价值函数和贝尔曼方程 10

1.5 求解马尔可夫决策过程 12

1.6 动态规划:基于模型的解决方案 13

1.6.1 基本的动态规划算法 13

1.6.2 高效的动态规划算法 17

1.7 强化学习:无模型的解决方案 19

1.7.1 时序差分学习 20

1.7.2 蒙特卡罗方法 23

1.7.3 高效的探索和价值更新 24

1.8 总结 27

参考文献 27

第二部分 高效的解决方案框架 32

第2章 批处理强化学习 32

2.1 简介 32

2.2 批处理强化学习问题 33

2.2.1 批处理学习问题 33

2.2.2 增长批处理学习问题 34

2.3 批处理强化学习算法的基础 34

2.4 批处理强化学习算法 37

2.4.1 基于核的近似动态规划 37

2.4.2 拟合Q迭代 39

2.4.3 基于最小二乘的策略迭代 40

2.4.4 识别批处理算法 41

2.5 批处理强化学习理论 42

2.6 批处理强化学习的实现 43

2.6.1 神经拟合Q迭代 44

2.6.2 控制应用中的神经拟合Q迭代算法 45

2.6.3 面向多学习器的批处理强化学习 46

2.6.4 深度拟合Q迭代 48

2.6.5 应用/发展趋势 49

2.7 总结 50

参考文献 50

第3章 策略迭代的最小二乘法 53

3.1 简介 53

3.2 预备知识:经典策略迭代算法 54

3.3 近似策略评估的最小二乘法 55

3.3.1 主要原则和分类 55

3.3.2 线性情况下和矩阵形式的方程 57

3.3.3 无模型算法的实现 60

3.3.4 参考文献 62

3.4 策略迭代的在线最小二乘法 63

3.5 例子:car-on-the-hill 64

3.6 性能保障 66

3.6.1 渐近收敛性和保证 66

3.6.2 有限样本的保证 68

3.7 延伸阅读 73

参考文献 74

第4章 学习和使用模型 78

4.1 简介 78

4.2 什么是模型 79

4.3 规划 80

4.4 联合模型和规划 82

4.5 样本复杂度 84

4.6 分解域 86

4.7 探索 88

4.8 连续域 91

4.9 实证比较 93

4.10 扩展 95

4.11 总结 96

参考文献 97

第5章 强化学习中的迁移:框架和概观 101

5.1 简介 101

5.2 强化学习迁移的框架和分类 102

5.2.1 迁移框架 102

5.2.2 分类 104

5.3 固定状态-动作空间中从源到目标迁移的方法 108

5.3.1 问题形式化 108

5.3.2 表示迁移 109

5.3.3 参数迁移 110

5.4 固定状态-动作空间中跨多任务迁移的方法 111

5.4.1 问题形式化 111

5.4.2 实例迁移 111

5.4.3 表示迁移 112

5.4.4 参数迁移 113

5.5 不同状态-动作空间中从源到目标任务迁移的方法 114

5.5.1 问题形式化 114

5.5.2 实例迁移 115

5.5.3 表示迁移 115

5.5.4 参数迁移 116

5.6 总结和开放性问题 116

参考文献 117

第6章 探索的样本复杂度边界 122

6.1 简介 122

6.2 预备知识 123

6.3 形式化探索效率 124

6.3.1 探索的样本复杂度和PAC-MDP 124

6.3.2 遗憾最小化 125

6.3.3 平均损失 127

6.3.4 贝叶斯框架 127

6.4 通用PAC-MDP定理 128

6.5 基于模型的方法 130

6.5.1 Rmax 130

6.5.2 Rmax的泛化 132

6.6 无模型方法 138

6.7 总结 141

参考文献 141

第三部分 建设性的表征方向 146

第7章 连续状态和动作空间中的强化学习 146

7.1 简介 146

7.1.1 连续域中的马尔可夫决策过程 147

7.1.2 求解连续MDP的方法 148

7.2 函数逼近 149

7.2.1 线性函数逼近 150

7.2.2 非线性函数逼近 153

7.2.3 更新参数 154

7.3 近似强化学习 157

7.3.1 数值逼近 157

7.3.2 策略逼近 162

7.4 双极车杆实验 168

7.5 总结 171

参考文献 171

第8章 综述:求解一阶逻辑马尔可夫决策过程 179

8.1 关系世界中的顺序决策简介 179

8.1.1 马尔可夫决策过程:代表性和可扩展性 180

8.1.2 简短的历史和与其他领域的联系 181

8.2 用面向对象和关系扩展马尔可夫决策过程 183

8.2.1 关系表示与逻辑归纳 183

8.2.2 关系型马尔可夫决策过程 184

8.2.3 抽象问题和求解 184

8.3 基于模型的解决方案 186

8.3.1 贝尔曼备份的结构 186

8.3.2 确切的基于模型的算法 187

8.3.3 基于近似模型的算法 190

8.4 无模型的解决方案 192

8.4.1 固定泛化的价值函数学习 192

8.4.2 带自适应泛化的价值函数 193

8.4.3 基于策略的求解技巧 196

8.5 模型、层级、偏置 198

8.6 现在的发展 201

8.7 总结和展望 203

参考文献 204

第9章 层次式技术 213

9.1 简介 213

9.2 背景 215

9.2.1 抽象动作 215

9.2.2 半马尔可夫决策问题 216

9.2.3 结构 217

9.2.4 状态抽象 218

9.2.5 价值函数分解 219

9.2.6 优化 220

9.3 层次式强化学习技术 220

9.3.1 选项 221

9.3.2 HAMQ学习 222

9.3.3 MAXQ 223

9.4 学习结构 226

9.5 相关工作和当前研究 228

9.6 总结 230

参考文献 230

第10章 针对强化学习的演化计算 235

10.1 简介 235

10.2 神经演化 237

10.3 TWEANN 239

10.3.1 挑战 239

10.3.2 NEAT 240

10.4 混合方法 241

10.4.1 演化函数近似 242

10.4.2 XCS 243

10.5 协同演化 245

10.5.1 合作式协同演化 245

10.5.2 竞争式协同演化 246

10.6 生成和发展系统 247

10.7 在线方法 249

10.7.1 基于模型的技术 249

10.7.2 在线演化计算 250

10.8 总结 251

参考文献 251

第四部分 概率模型 260

第11章 贝叶斯强化学习 260

11.1 简介 260

11.2 无模型贝叶斯强化学习 261

11.2.1 基于价值函数的算法 261

11.2.2 策略梯度算法 264

11.2.3 演员-评论家算法 266

11.3 基于模型的贝叶斯强化学习 268

11.3.1 由POMDP表述的贝叶斯强化学习 268

11.3.2 通过动态规划的贝叶斯强化学习 269

11.3.3 近似在线算法 271

11.3.4 贝叶斯多任务强化学习 272

11.3.5 集成先验知识 273

11.4 有限样本分析和复杂度问题 274

11.5 总结和讨论 275

参考文献 275

第12章 部分可观察的马尔可夫决策过程 279

12.1 简介 279

12.2 部分可观察环境中的决策 280

12.2.1 POMDP模型 280

12.2.2 连续和结构化的表达 281

12.2.3 优化决策记忆 282

12.2.4 策略和价值函数 284

12.3 基于模型的技术 285

12.3.1 基于MDP的启发式解决方案 285

12.3.2 POMDP的值迭代 286

12.3.3 确切的值迭代 288

12.3.4 基于点的值迭代方法 290

12.3.5 其他近似求解方法 291

12.4 无先验模型的决策 292

12.4.1 无记忆技术 292

12.4.2 学习内部记忆 292

12.5 近期研究趋势 294

参考文献 295

第13章 预测性定义状态表示 300

13.1 简介 300

13.1.1 状态是什么 301

13.1.2 哪一个状态表示 301

13.1.3 为什么使用预测性定义模型 302

13.2 PSR 303

13.2.1 历史及测试 303

13.2.2 测试的预测 304

13.2.3 系统动态向量 304

13.2.4 系统动态矩阵 305

13.2.5 充分的数据集 305

13.2.6 状态 306

13.2.7 更新状态 306

13.2.8 线性PSR 307

13.2.9 线性PSR与POMDP的关联 307

13.2.10 线性PSR的理论结果 308

13.3 PSR模型学习 308

13.3.1 发现问题 308

13.3.2 学习问题 309

13.3.3 估计系统动态矩阵 309

13.4 规划与PSR 309

13.5 PSR的扩展 310

13.6 其他具有预测性定义状态的模型 311

13.6.1 可观测算子模型 311

13.6.2 预测线性高斯模型 312

13.6.3 时序差分网络 312

13.6.4 分集自动机 312

13.6.5 指数族PSR 313

13.6.6 转换PSR 313

13.7 总结 313

参考文献 314

第14章 博弈论和多学习器强化学习 317

14.1 简介 317

14.2 重复博弈 319

14.2.1 博弈论 319

14.2.2 重复博弈中的强化学习 322

14.3 顺序博弈 325

14.3.1 马尔可夫博弈 326

14.3.2 马尔可夫博弈中的强化学习 327

14.4 在多学习器系统中的稀疏交互 330

14.4.1 多等级学习 330

14.4.2 协调学习与稀疏交互 331

14.5 延伸阅读 334

参考文献 334

第15章 去中心化的部分可观察马尔可夫决策过程 338

15.1 简介 338

15.2 Dec-POMDP框架 339

15.3 历史状态与策略 340

15.3.1 历史状态 341

15.3.2 策略 341

15.3.3 策略的结构 342

15.3.4 联合策略的质量 343

15.4 有限域的Dec-POMDP的解决方案 344

15.4.1 穷举搜索和Dec-POMDP复杂性 344

15.4.2 交替最大化 344

15.4.3 Dec-POMDP的最优价值函数 345

15.4.4 前推法:启发式搜索 348

15.4.5 后推法:动态规划 350

15.4.6 其他有限域的方法 353

15.5 延伸阅读 353

15.5.1 一般化和特殊问题 353

15.5.2 有限Dec-POMDP 354

15.5.3 强化学习 355

15.5.4 通信 356

参考文献 356

第五部分 其他应用领域 364

第16章 强化学习与心理和神经科学之间的关系 364

16.1 简介 364

16.2 经典(巴甫洛夫)条件反射 365

16.2.1 行为 365

16.2.2 理论 366

16.2.3 小结和其他注意事项 367

16.3 操作性(工具性)条件反射 368

16.3.1 动作 368

16.3.2 理论 369

16.3.3 基于模型的控制与无模型的控制 370

16.3.4 小结和其他注意事项 371

16.4 多巴胺 371

16.4.1 多巴胺作为奖励预测误差 372

16.4.2 多巴胺的强化信号的作用 372

16.4.3 小结和其他注意事项 373

16.5 基底神经节 373

16.5.1 基底神经节概述 374

16.5.2 纹状体的神经活动 374

16.5.3 皮质基神经节丘脑循环 375

16.5.4 小结和其他注意事项 377

16.6 总结 378

参考文献 378

第17章 游戏领域的强化学习 387

17.1 简介 387

17.1.1 目标和结构 387

17.1.2 范围 388

17.2 游戏展示厅 388

17.2.1 西洋双陆棋 389

17.2.2 国际象棋 391

17.2.3 围棋 394

17.2.4 俄罗斯方块 398

17.2.5 即时战略游戏 400

17.3 强化学习应用到游戏的挑战 402

17.3.1 表示的设计 402

17.3.2 探索 404

17.3.3 训练数据的来源 405

17.3.4 处理缺失的信息 406

17.3.5 对手建模 407

17.4 在游戏中使用强化学习 407

17.4.1 最具娱乐性的对手 407

17.4.2 开发期间的学习 408

17.5 总结 409

参考文献 410

第18章 机器人领域的强化学习综述 415

18.1 简介 415

18.2 机器人强化学习中的挑战 416

18.2.1 维度灾难 417

18.2.2 真实场景样本灾难 418

18.2.3 真实场景交互灾难 418

18.2.4 模型错误灾难 418

18.2.5 目标规范灾难 419

18.3 机器人强化学习基础 419

18.3.1 价值函数方法 420

18.3.2 策略搜索 421

18.4 表示法带来的可行性 422

18.4.1 智能状态-动作离散化 423

18.4.2 函数近似 423

18.4.3 预构建策略 424

18.5 先验知识带来的可行性 425

18.5.1 示范中的先验知识 425

18.5.2 任务结构中的先验知识 426

18.5.3 先验知识指导探索 427

18.6 仿真模拟带来的可行性 427

18.6.1 模型的作用 427

18.6.2 智力预演 428

18.6.3 从仿真直接迁移到真实机器人 429

18.7 一个学习样例:杯中球任务 429

18.7.1 实验设置:任务和奖励 429

18.7.2 适当的策略表示 430

18.7.3 生成教师的示范 430

18.7.4 使用策略搜索进行强化学习 430

18.7.5 机器人强化学习中使用仿真模拟 431

18.7.6 价值函数方法的替代方案 431

18.8 总结 432

参考文献 432

第六部分 结束语 440

第19章 总结、未来方向和展望 440

19.1 回顾 440

19.1.1 本书覆盖内容 440

19.1.2 哪些主题没有被包含 441

19.2 展望未来 445

19.2.1 目前未知的内容 445

19.2.2 看起来不可能的强化学习应用 446

19.2.3 有趣的方向 447

19.2.4 专家对未来发展的看法 448

参考文献 449

缩写词 453

索引 455