《射频电路设计理论及应用 英文影印版》PDF下载

  • 购买积分:18 如何计算积分?
  • 作  者:ReinholdLudwigLudwig,PavelBretchko著
  • 出 版 社:北京:科学出版社
  • 出版年份:2002
  • ISBN:7030101359
  • 页数:642 页
图书介绍:本书为国外高校电子信息类优秀教材(英文影印版)之一。本书在重点介绍射频电路设计理论的同时介绍其设计方法。主要内容有发射线路、Smith图、单点和多点网络、射频过滤设计、有源射频元件及模式、匹配和偏压网络、射频晶体管放大器设计以及振荡器和混频器等。本书适用于高等院校通信、电子工程及相关专业的本科生,也可供一般工程技术人员参考。

Chapter 1.Introduction 1

1.1 Importance of Radiofrequency Design 2

1.2 Dimensions and Units 6

1.3 Frequency Spectrum 8

1.4 RF Behavior of Passive Components 10

1.4.1 High-Frequency Resistors 14

1.4.2 High-Frequency Capacitors 17

1.4.3 High-Frequency Inductors 21

1.5 Chip Components and Circuit Board Considerations 24

1.5.1Chip Resistors 24

1.5.2 Chip Capacitors 25

1.5.3 Surface-Mounted Inductors 26

1.6 Summary 28

2.1 Why Transmission Line Theory? 37

Chapter 2.Tfransmission Line Analysis 37

2.2 Examples of Transmission Lines 41

2.2.1 Two-Wire Lines 41

2.2.2 Coaxial Line 42

2.2.3 Microstrip Lines 42

2.3 Equivalent Circuit Representation 45

2.4 Theoretical Foundation 47

2.4.1 Basic Laws 47

2.5 Circuit Parameters for a Parallel Plate Transmission Line 53

2.6 Summary of Different Line Configurations 57

2.7 General Transmission Line Equation 58

2.7.1 Kirchhoff Voltage and Current Law Representations 58

2.7.2 Traveling Voltage and Current Law Waves 62

2.7.3 General Impedance Definition 63

2.7.4 Lossless Transmission Lin Model 64

2.8 Microstrip Transmission Lines 64

2.9 Terminated Lossless Transmission Line 69

2.9.1 Voltage Reflection Coefficient 69

2.9.2 Propagation Constant and Phase Velocity 71

2.9.3 Standing Waves 72

2.10 Special Termination Conditions 75

2.10.1Input Impedance of Terminated Lossless Line 75

2.10.2 Short Circuit Transmission Line 76

2.10.3 Open-Circuit Transmission Line 79

2.10.4 Quarter-Wave Transmission Line 81

2.11 Sourced and Loaded Transmission Line 84

2.11.1 Phasor Representation of Source 85

2.11.2 Power Considerations for a Transmission Line 87

2.11.3 Input Impedance Matching 90

2.11.4 Return Loss and Insertion Loss 91

2.12 Summary 93

Chapter 3.The Smith Chart 101

3.1 From Reflection Coefficient to Load Impedance 102

3.1.1 Reflection Coefficient in Phasor Form 102

3.1.2 Normalized Impedance Equation 104

3.1.3 Parametric Reflection Coefficient Equation 106

3.1.4 Graphical Representation 108

3.2 Impedance Transformation 110

3.2.1 Impedance Transformation for General Load 110

3.2.2 Standing Wave Ratio 113

3.2.3 Special Transformation Conditions 115

3.2.4 Computer Simulations 119

3.3.1 Parametric Admittance Equation 122

3.3 Admittance Transformation 122

3.3.2 Additional Graphical Displays 125

3.4. Parallel and Series Connections 126

3.4.1 Parallel Connection of R and L Elements 127

3.4.2 Parallel Connection of R and C Elements 128

3.4.3 Series Connection of R and L Elements 128

3.4.4 Series Connection of R and C Elements 129

3.4.5 Example of a T-Network 130

3.5 Summary 133

Chapter 4.Single-and Multiport Networks 143

4.1 Basic Definitions 144

4.2 Interconnecting Networks 153

4.2.1 Series Connection of Networks 153

4.2.2 Parallel Connection of Networks 154

4.2.3 Cascading Networks 155

4.2.4 Summary of ABCD Network Representations 156

4.3 Network Properties and Applications 161

4.3.1 Interrelations between Parameter Sets 161

4.3.2 Analysis of Microwave Amplifier 164

4.4 Scattering Parameters 168

4.4.1 Definition of Scattering Parameters 168

4.4.2 Meaning of S-Parameters 171

4.4.3 Chain Scattering Matrix 175

4.4.4 Conversion between Z-and S-Parameters 177

4.4.5 Signal Flow Chart Modeling 178

4.4.6 Generalization of S-Parameters 184

4.4.7 Practical Measurements of S-Parameters 188

4.5 Summary 194

Chapter 5. An Overview of RF Filter Design 201

5.1 Basic Resonator and Filter Configurations 202

5.1.1 Filter Types and Parameters 202

5.1.2 Low-Pass Filter 206

5.1.3 High-Pass Filter 209

5.1.4 Bandpass and Bandstop Filters 210

5.1.5 Insertion Loss 217

5.2 Special Filter Realizations 220

5.2.1 Butterworth-Type Filters 221

5.2.2 Chebyshev-Type Filters 224

5.2.3 Denormalization of Standard Low-Pass Design 231

5.3 Filter Implementation 241

5.3.1 Unit Elements 243

5.3.2 Kuroda s Iaentities 243

5.3.3 Examples of Microstrip Filter Design 245

5.4 Coupled Filter 253

5.4.1 Odd and Even Mode Excitation 254

5.4.2 Bandpass Filter Section 257

5.4.3 Cascading bandpass filter elements 258

5.4.4 Design Example 260

5.5 Summary 263

Chapter 6. Active RF Components 271

6.1 Semiconductor Basics 272

6.1.1 Physical Properties of Semiconductors 272

6.1.2 PN-Junction 279

6.1.3 Schottky Contact 289

6.2 RF Diodes 293

6.2.1 Schottky Diode 293

6.2.2 PIN Diode 296

6.2.3 Varactor Diode 302

6.2.4 IMPATT Diode 305

6.2.5 Tunnel Diode 307

6.2.6 TRAPATT,BARRITT,and Gunn Diodes 311

6.3 Bipolar-Junction Transistor 312

6.3.1 Construction 312

6.3.2 Functionality 314

6.3.3 Frequency Response 321

6.3.4 Temperature Behavior 323

6.3.5 Limiting Values 327

6.4 RF Field Effect Transistors 328

6.4.1 Construction 329

6.4.2 Functionality 331

6.4.3 Frequency Response 337

6.4.4 Limiting Values 337

6.5 High Electron Mobility Transistors 338

6.5.1 Construction 339

6.5.2 Functionality 339

6.5.3 Frequency Response 343

6.6 Summary 343

Chapter 7.Active FR Component Modeling 351

7.1 Diode Models 352

7.1.1 Nonlinear Diode Model 352

7.1.2 Linear Diode Model 354

7.2 Transistor Models 357

7.2.1Large-Signal BJT Models 357

7.2.2 Small-Signal BJT Models 366

7.2.3 Large-Signal FET Models 378

7.2.4 Small-Signal FET Models 382

7.3.1 DC Characterization of Bipolar Transistor 385

7.3 Measurement of Active Devices 385

7.3.2 Measurements of AC Parameters of Bipolar Transistors 387

7.3.3 Measurements of Field Effect Transistor Parameters 392

7.4 Scattering Parameter Device Characterization 393

7.5 Summary 397

Chapter 8.Matching and Biasing Networks 405

8.1 Impedance Matching Using Discrete Components 406

8.1.1 Two-Component Matching Networks 406

8.1.2 Forbidden Regions,Frequency Response,and Quality Factor 415

8.1.3 T and Pi Matching Networks 426

8.2 Microstrip Line Matching Networks 431

8.2.1 From Discrete Components to Microstrip Lines 431

8.2.2 Single -Stub Matching Networks 435

8.2.3 Double-Stub Maching Networks 440

8.3.1 Classes of Operation and Efficiency of Amplifiers 444

8.3 Amplifier Classes of Operation and Biasing Networks 444

8.3.2 Bipolar Transistor Biasing Networks 449

8.3.3 Field Effect Transistor Biasing Networks 455

8.4 Summary 456

Chapter 9.RF Transistor Amplifter Designs 463

9.1 Characteristics of Amplifiers 464

9.2 Amplifier Power Relations 465

9.2.1 RF Source 465

9.2.2 Transducer Power Gain 466

9.2.3 Additional Power Relations 468

9.3 Stability Considerations 470

9.3.1 Stability Circles 470

9.3.2 Unconditional Stability 473

9.3.3 Stabilization Methods 480

9.4.1 Unilateral Design 483

9.4 Constant Gain 483

9.4.2 Unilateral Figure of Merit 490

9.4.3 Bilateral Design 492

9.4.4 Operating and Available Power Gain Circles 495

9.5 Noise Figure Circles 502

9.6 Constant VSWR Circles 506

9.7 Broadband,High-Power,and Multistage Amplifiers 511

9.7.1 Broadband Amplifiers 511

9.7.2 Hith-Power Amplifiers 522

9.7.3 Multistage Amplifiers 526

9.8 Summary 529

Chapter 10.Oscillators and Mixers 539

10.1 Basic Oscillator Model 540

10.1.1 Negative Resistance Oscillator 541

10.1.2 Feedback Oscillator Design 543

10.1.3 Design Steps 546

10.1.4 Quartz Oscillators 550

10.2 High-Frequency Oscillator Configuration 552

10.2.1 Fixed-Frequency Oscillators 556

10.2.2 Dielectric Resonator Oscillators 563

10.2.3 YIG-Tuned Oscillator 569

10.2.4 Voltage-Controlled Oscillator 570

10.2.5 Gunn Element Oscillator 573

10.3 Basic Characteristics of Mixers 574

10.3.1 Basic Concepts 575

10.3.2 Frequency Domain Considerations 578

10.3.3 Single-Ended Mixer Design 580

10.3.4 Single-Balanced Mixer 588

10.4 Summary 590

10.3.5 Double-Balanced Mixer 590

Appendix A.Useful Physical Quantities and Units 597

Appendix B.Skin Equation for a Cylindrical Conductor 601

Appendix C.Complex Numbers 603

C.1 Basic Definition 603

C.2 Magnitude Computations 603

C.3 Circle Equation 604

Appendix D. Matrix Conversions 605

Appendix E. Physical Parameters of Semiconductors 608

Appendix F. Long and Short Diode Models 609

F.1 Long Diode 610

F.2 Short Diode 610

Appendix G. Couplers 612

G.1Wilkinson Divider 612

G.2 Branch Line Coupler 616

G.3 Lange Coupler 619

Appendix H.Noise Analysis 620

H.1 Basic Definitions 620

H.2 Noisy Two-Port Networks 623

H.3 Noise Figure for Two-Port Network 625

H.4 Noise Figure for Cascaded Multiport Network 629

Appendix I.Introduction to MATLAB 631

I.1 Background 631

I.2 Brief Example of Stability Evaluation 633

I.3 Simulation Software on Compact Disk 635

I.3.1 Overview 635

I.3.2 Software Installation 635

I.3.3 File Organization 636

Index 637