1 INTRODUCTLON 1
PREFACE 1
1.1. WHAT IS AN OPERATING SYSTEM? 3
1.1.1. The Operating System as an Extended Machine 3
1.1.2. The Operating System as a Resource Manager 5
1.2. HISTORY OF OPERATING SYSTEMS 6
1.2.1. The First Generation(1945-55) 6
1.2.2. The Second Generation(1995-65) 7
1.2.3. The Third Generation(1965-1980) 9
1.2.4. The Fourth Generation(1980-Present) 13
1.2.5. Ontogeny Recapitulates Phylogeny 16
1.3. THE OPERATING SYSTEM ZOO 18
1.3.1. Mainframe Operating Systems 18
1.3.4. Personal Computer Operating Systems 19
1.3.5. Real-Time Operating systems 19
1.3.2. Server Operating Systems 19
1.3.3. Multiprocessor Operating Systems 19
1.3.6. Embedded Operating Systems 20
1.3.7. Smart Card Operating Systems 20
1.4. COMPUTER HARDWARE REVIEW 20
1.4.1. Processors 21
1.4.2. Memory 23
1.4.3. I/O Devices 28
1.4.4. Buses 31
1.5. OPERATING SYSTEM CONCEPTS 34
1.5.1. Processes 34
1.5.2. Deadlocks 36
1.5.3. Memory Management 37
1.5.5. Files 38
1.5.4. Input/Output 38
1.5.6. Security 41
1.5.7. The Shell 41
1.5.8. Recycling of Concepts 43
1.6. SYSTEM CALLS 44
1.6.1. System Calls for process Management 48
1.6.2. System Calls for File Management 50
1.6.3. System Dalls for Directory Management 51
1.6.4. Miscellaneous System Calls 53
1.6.5. The Windows Win32 API 53
1.7. OPERATING SYSTEM STRUCTURE 56
1.1.1. Monolithic Systems 56
1.1.2. Layered Systems 57
1.2.3. Virtual Machines 59
1.7.5 Client-Server Model 61
1.2.4. Exokernels 61
1.8. RESEARCH ON OPERATING SYSTEMS 63
1.9. OUTLINE OF THE REST OF THIS BOOK 65
1.10. METRIC UNITS 66
1.11. SUMMARY 67
2 PROCESSES AND THREADS 71
2.1. PROCESSES 71
2.1.1. The Process Model 72
2.1.2. Process Creation 73
2.1.3. Process Termination 75
2.1.4. Process Hierarchies 76
2.1.5. Process States 77
2.1.6. Implementation of Processes 79
2.2. THREADS 81
2.2.1. The Thread Model 81
2.2.2. Thread Usage 85
2.2.3. Implementing Threads in User Space 90
2.2.4. Implementing Threads in the Kernel 93
2.2.5. Hybrid Implementations 94
2.2.6. Scheduler Activations 94
2.2.7. Pop-Up Threads 96
2.2.8. Making Single-Threaded Code Multithreaded 97
2.3 INTERPROCESS COMMUNICATION 100
2.3.1. Race Conditions 100
2.3.2. Critical Regions 102
2.3.3. Mutual Exclusion with Busy Waiting 103
2.3.4. Sleep and Wakeup 108
2.3.5. Semaphores 110
2.3.6. Mutexes 113
2.3.7. Monitors 115
2.3.8. Message Passing 119
2.3.9. Barriers 123
2.4. CLASSICAL IPC PROBLEMS 124
2.4.1. The Dining Philosophers Problem 125
2.4.2. The Readers and Writers Problem 128
2.4.3. The Sleeping Barber Problem 129
2.5. SCHEDULING 132
2.5.1. Introduction to Scheduling 132
2.5.2. Scheduling in Batch Systems 138
2.5.3. Scheduling in Interactive Systems 142
2.5.4. Scheduling in Real-Time Systems 148
2.5.5. Policy versus Mechanism 149
2.5.6. Thread Scheduling 150
2.6. RESEARCH ON PROCESSES AND THREADS 151
2.7. SUMMARY 152
3 DEADLOCKS 159
3.1. RESOURCES 160
3.1.1. Preemptable and Nonpreemptable Resources 160
3.1.2. Resource Acquisition 161
3.2. INTRODUCTION TO DEADLOCKS 163
3.2.1. Conditions for Deadlock 164
3.3.2. Deadlock Modeling 164
3.3. THE OSTRICH ALGORITHM 167
3.4. DEADLOCK DETECTION AND RECOVERY 168
3.4.1. Deadlock Detection with One Resource of Each Type 168
3.4.2. Deadolck Detection with Multiple Resource of Each Type 171
3.4.3. Recovery from Deadlock 173
3.5. DEADLOCK AVOIDANCE 175
3.5.1. Resource Trajectories 175
3.5.2. Safe and Unsafe States 176
3.5.3. The Banker s Algorithm for a Single Resource 178
3.5.4. The Banker s Algorithm for Multiple Resources 179
3.6. DEADLOCK PREVENTION 180
3.6.1. Attacking the Mutual Exclusion Condition 180
3.6.2. Attacking the Hold and Wait Condition 181
3.6.3. Attacking the No Preemption Condition 182
3.6.4. Attacking the Circular Wait Condition 182
3.7. OTHER ISSUES 183
3.7.1. Two-Phase Locking 183
3.7.2. Nonresource Deadlocks 184
3.7.3. Starvation 184
3.8. RESEARCH ON DEADLOCKS 185
3.9. SUMMARY 185
4 MEMORY MANAGEMENT 189
4.1.1. Monoprogramming without Swapping or Paging 190
4.1. BASIC MEMORY MANAGEMENT 190
4.1.2. Multiprogramming with Fixed Partitions 191
4.1.3. Modeling Multiprogramming 192
4.1.4. Analysis of Multiprogramming System Performance 194
4.1.5. Relocation and Protection 194
4.2. SWAPPING 196
4.2.1. Memory Management with Bitmaps 199
4.2.2. Memory Management with Linked Lists 200
4.3. VIRTUAL MEMORY 202
4.3.1. Paging 202
4.3.2. Page Tables 205
4.3.3. TLBs-Translation Lookaside Buffers 211
4.3.4. Inverted Page Tables 213
4.4. PAGE REPLACEMENT ALGORITHMS 214
4.4.1. The Optimal Page Replacement Algorithm 215
4.4.2. The Not Recently Used Page Replacement Algorithm 216
4.4.3. The First-In, First-Out 217
4.4.4. The Second Chance Page Replacement Algorithm 217
4.4.5. The Clock Page Replacement Algorithm 218
4.4.6. The Least Recently Used 218
4.4.7. Simulating LRU in Software 220
4.4.8. The Working Set Page Replacement Algorithm 222
4.4.9. The WSClock Page Replacement Algorithm 225
4.4.:. Summary of Page Replacement Algorithms 227
4.5. MODELING PAGE REPLACEMNT ALGORITHMS 228
4.5.1. Belady s Anomaly 229
4.5.2. Stack Algorithms 229
4.5.3. The Distance String 232
4.5.4. Predicting Page Fault Rates 233
4.6.1. Local versus Global Allocation Policies 234
4.6. DESIGN ISSUES FOR PAGING SYSTEMS 234
4.6.2. Load Control 236
4.6.3. Page Size 237
4.6.4. Separate Instruction and Data Spaces 239
4.6.5. Shared Pages 239
4.6.6. Cleaning Policy 241
4.6.7. Virtual Memory Interface 241
4.7. IMPLEMENTATION ISSUES 242
4.7.1. Operating System Involvement with Paging 242
4.7.2. Page Fault Handling 243
4.7.3. Instruction Backup 244
4.7.4. Locking Pages in Memory 246
4.7.5. Backing Store 246
4.7.6. Separation of Policy and Mechanism 247
4.8. SEGMENTATION 249
4.8.1. Implementation of Pure Segmentation 253
4.8.2. Segmentation with Paging: MULTICS 254
4.8.3. Segmentation with Paging: The Intel Pentium 257
4.9. RESEARCH ON MEMORY MANAGEMENT 262
4.10 SUMMARY 262
5 INPUT/OUTPUT 269
5.1. PRINCIPLES OF I/O HARDWARE 269
5.1.1. I/O Devices 270
5.1.2. Device Controllers 271
5.1.3. Memory-Mapped I/O 272
5.1.4. Direct Memory Access 276
5.1.5. Interrupts Revisited 279
5.2. PRINCIPLES OF I/O SOFTWARE 282
5.2.1. Goals of the I/O Software 283
5.2.2. Programmed I/O 284
5.2.3. Interrupt-Driven I/O 286
5.2.4. I/O Using DMA 287
5.3. I/O SOFTWARE LAYERS 287
5.3.1. Interrupt Handlers 287
5.3.2. Device Drivers 289
5.3.3. Device-Independent I/O Software 292
5.3.4. User-Space I/O Software 298
5.4. DISKS 300
5.4.1. Disk Hardware 300
5.4.2. Disk Formatting 315
5.4.3. Disk Arm Scheduling Algorithms 318
5.4.4. Error Handling 322
5.4.5. Stable Storage 324
5.5. CLOCKS 327
5.5.1. Clock Hardware 328
5.5.2. Clock Software 329
5.5.3. Soft Timers 332
5.6. CHARACTER-ORIENTED TERMINALS 333
5.6.1. RS-232 Terminal Hardware 334
5.6.2. Input Software 336
5.6.3. Output Software 341
5.7. GRAPHICAL USER INTERFACES 342
5.7.1. Personal Computer Keyboard, Mouse, and Display Hardware 343
5.7.2. Input Software 347
5.7.3. Output Software for Windows 347
5.8. NETWORK TERMINALS 355
5.8.1. The X Window System 356
5.8.2. The SLIM Network Terminal 360
5.9. POWER MANAGEMENT 363
5.9.1. Hardware Issues 364
5.9.2. Operating System Issues 365
5.9.3. Degraded Operation 370
5.10. RESEARCH ON INPUT/OUTPUT 371
5.11. SUMMARY 372
6 FILE SYSTEMS 379
6.1. FILES 380
6.1.1. File Naming 380
6.1.2. File Structure 382
6.1.3. File Types 383
6.1.4. File Access 385
6.1.5. File Attributes 386
6.1.6. File Operations 387
6.1.7. An Example Program Using File System Calls 389
6.1.8. Memory-Mapped Files 391
6.2. DIRECTORIES 393
6.2.1. Single-Level Directory Systems 393
6.2.2. Two-level Directory Systems 394
6.2.3. Hierarchical Directory Systems 395
6.2.4. Path Names 395
6.2.5. Directory Operations 398
6.3. FILE SYSTEM IMPLEMENTATION 399
6.3.1. File System Layout 399
6.3.2. Implementing Files 400
6.3.3. Implementing Directories 405
6.3.4. Shared Files 408
6.3.5. Disk Space Management 410
6.3.6. File System Reliability 416
6.3.7. File System Performance 424
6.3.8. Log-Structured File Systems 428
6.4. EXAMPLE FILE SYSTEMS 430
6.4.1. CD-ROM File Systems 430
6.4.2. The CP/M File System 435
6.4.3. The MS-DOS File System 438
6.4.4. The Windows 98 File System 442
6.4.5. The UNIX V7 File System 445
6.5. RESEARCH ON FILE SYSTEMS 448
6.6. SUMMARY 448
7 MULTIMEDLA OPERATING SYSTEMS 453
7.1. INTRODUCTION TO MULTIMEDIA 454
7.2. MULTIMEDIA FILES 458
7.2.1. Audio Encoding 459
7.2.2. Video Encoding 461
7.3. VIDEO COMPRESSION 463
7.3.1. The JPEG Standard 464
7.3.2. The MPEG Standard 467
7.4. MULTIMEDIA PROCESS SCHEDULING 469
7.4.1. Scheduling Homogeneous Processes 469
7.4.2. General Real-Time Scheduling 470
7.4.3. Rate Monotonic Scheduling 472
7.4.4. Earliest Deadline First Scheduling 473
7.5. MULTIMEDIA FILE SYSTEM PARADIGMS 475
7.5.1. VCR Control Functions 476
7.5.2. Near Video on Demand 478
7.5.3. Near Video on Demand with VCR Functions 479
7.6. FILE PLACEMENT 481
7.6.1. Placing a File on a Single Disk 481
7.6.2. Two Alternative File Organization Strategies 482
7.6.3 Placing Files for Near Video on Demand 486
7.6.4 Placing Multiple Files on a Single Disk 487
7.6.5 Placing Files on Multiple Disks 490
7.7. CACHING 492
7.7.1. Block Caching 492
7.7.2. File Caching 494
7.8. DISK SCHEDULING FOR MULTIMEDIA 494
7.8.1. Static Disk Scheduling 495
7.8.2. Dynamic Disk Scheduling 496
7.9. RESEARCH ON MULTIMEDIA 498
7.10. SUMMARY 499
8 MULTIPLE PROCESSOR SYSTEMS 503
8.1. MULTIPROCESSORS 506
8.1.1. Multiprocessor Hardware 506
8.1.2. Multiprocessor Operating System Types 513
8.1.3. Multiprocessor Synchronization 516
8.1.4. Multiprocessor Scheduling 521
8.2. MULTICOMPUTERS 526
8.2.1. Multicomputer Hardware 527
8.2.2. Low-Level Communication Software. 531
8.2.3. User-Level Communication Software 534
8.2.4. Remote Procedure Call 537
8.2.5. Distributed Shared Memory 540
8.2.6. Multicomputer Scheduling 544
8.2.7. Load Balancing 545
8.3. DISTRIBUTED SYSTEMS 549
8.3.1. Network Hardware 551
8.3.2. Network Services and Protocols 553
8.3.3. Document-Based Middleware 558
8.3.4. File System-Based Middleware 559
8.3.5. Shared Object-Based Middleware 565
8.3.6. Coordination-Based Middleware 572
8.4.RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 577
8.5. SUMMARY 577
9 SECURITY 583
9.1. THE SECURITY ENVIRONMENT 584
9.1.1. Threats 584
9.1.2. Intruders 585
9.1.3. Accidental Data Loss 586
9.2. BASICS OF CRYPTOGRAPHY 587
9.2.1. Secret-Key Cryptography 588
9.2.2. Public-Key Cryptography 588
9.2.3. One-Way Functions 589
9.2.4. Digital Signatures 590
9.3. USER AUTHENTICATION 591
9.3.1. Authentication Using Passwords 592
9.3.2. Authentication Using a Physical Object 601
9.3.3. Authentication Using Biometrics 603
9.3.4 Countermeasures 606
9.4. ATTACKS FROM INSIDE THE SYSTEM 606
9.4.1. Trojan Horses 607
9.4.2. Login Spoofing 608
9.4.3. Logic Bombs 609
9.4.4. Trap Doors 610
9.4.5. Buffer Overflow 610
9.4.6. Generic Security Attacks 613
9.4.7. Famous Security Flaws 614
9.7.8. Design Principles for Security 616
9.5. ATTACKS FROM OUTSIDE THE SYSTEM 617
9.5.1. Virus Damage Scenarios 618
9.5.2. How Viruses Work 619
9.5.3. How Viruses Spread 626
9.5.4. Antivirus and Anti-Antivirus Techniques 628
9.5.5. The Internet Worm 635
9.5.6. Mobile Code 637
9.5.7. Java Security 642
9.6. PROTECTION MECHANISMS 645
9.6.1. Protection Domains 645
9.6.2. Access Control Lists 647
9.6.3. Capabilities 650
9.7. TRUSTED SYSTEMS 653
9.7.1. Trusted Computing Base 654
9.7.2. Formal Models of Secure Systems 655
9.7.3. Multilevel Security 657
9.7.4. Orange Book Security 659
9.7.5. Covert Channels 661
9.8. RESEARCH ON SECURITY 665
9.9. SUMMARY 666
10 CASE STUDY 1: UNIX AND LINUX 671
10.1. HISTORY OF UNIX 672
10.1.1. UNICS 672
10.1.2. PDP-11 UNIX 673
10.1.3. Portable UNIX 674
10.1.4. Berkeley UNIX 675
10.1.5. Standard UNIX 676
10.1.6. MINIX 677
10.1.7. Linux 678
10.2. OVERVIEW OF UNIX 681
10.2.1. UNIX Goals 681
10.2.2. Interfaces to UNIX 682
10.2.3. The UNIX Shell 683
10.2.4. UNIX Utility Programs 686
10.2.5. Kernel Structure 687
10.3. PROCESSES IN UNIX 690
10.3.1. Fundamental Concepts 690
10.3.2. Process Management System Calls in UNIX 692
10.3.3. Implementation of Processes in UNIX 699
10.3.4. Booting UNIX 708
10.4. MEMORY MANAGEMENT IN UNIX 710
10.4.1. Fundamental Concepts 711
10.4.2. Memory Management System Calls in UNIX 714
10.4.3. Implementation of Memory Management in UNIX 715
10.5. INPUT/OUTPUT IN UNIX 723
10.5.1. Fundamental Concepts 724
10.5.2. Input/Output System Calls in UNIX 726
10.5.3. Implementation of Input/Output in UNIX 727
10.5.4. Streams 730
10.6. THE UNIX FILE SYSTEM 732
10.6.1. Fundamental Concepts 732
10.6.2. File System Calls in UNIX 736
10.6.3. Implementation of the UNIX File System 740
10.6.4. NFS: The Network File System 747
10.7. SECURITY IN UNIX 753
10.7.1. Fundamental Concepts 753
10.7.2. Security System Calls in UNIX 755
10.7.3. Implementation of Security in UNIX 756
10.8. SUMMARY 757
11.1. HISTORY OF WINDOWS 2000 763
11.1.1. MS-DOS 763
11 CASE STUDY 2: WINDOWS 2000 763
11.1.2. Windows 95/98/Me 764
11.1.3. Windows NT 765
11.1.4. Windows 2000 767
11.2. PROGRAMMING WINDOWS 2000 771
11.2.1. The Win32 Application Programming Interface 772
11.2.2. The Registry 774
11.3. SYSTEM STRUCTURE 778
11.3.1. Operating System Structure 778
11.3.2. Implementation of Objects 787
11.3.3. Environment Subsystems 792
11.4. PROCESSES AND THREADS IN WINDOWS 2000 796
11.4.1. Fundamental Concepts 796
11.4.2. Job, Process, Thread and Fiber Management API Calls 799
11.4.3. Implementation of Processes and Threads 802
11.4.4. MS-DOS Emulation 809
11.5. MEMORY MANAGEMENT 811
11.5.1. Fundamental Concepts 812
11.5.2. Memory Management System Calls 816
11.5.3. Implementation of Memory Management 817
11.4.5. Booting Windows 2000 820
11.6. INPUT/OUTPUT IN WINDOWS 2000 824
11.6.1. Fundamental Concepts 824
11.6.2. Input/Output API Calls 825
11.6.3. Implementation of I/O 827
11.6.4. Device Drivers 827
11.7. THE WINDOWS 2000 FILE SYSTEM 830
11.7.1. Fundamental Concepts 830
11.7.2. File System API Calls in Windows 2000 831
11.7.3. Implementation of the Windows 2000 File System 833
11.8. SECURITY IN WINDOWS 2000 844
11.8.1. Fundamental Concepts 845
11.8.2. Security API Calls 847
11.8.3. Implementation of Security 848
11.9. CACHING IN WINDOWS 200 849
11.10. SUMMARY 851
12 OPERATING SYSTEM DESIGN 855
12.1. THE NATURE OF THE DESIGN PROBLEM 856
12.1.1. Goals 856
12.1.2. Why,is it Hard to Design an Operating Systems? 857
12.2. INTERFACE DESIGN 859
12.2.1. Guiding Principles 859
12.2.2. Paradigms 861
12.2.3. The System Call Interface 864
12.3.1. System Structure 867
12.3. IMPLEMENTATION 867
12.3.2. Mechanism versus Policy 870
12.3.3. Orthogonality 871
12.3.4. Naming 872
12.3.5. Binding Time 874
12.3.6. Static versus Dynamic Structures 875
12.3.7. Top-Down versus Bottom-Up Implementation 876
12.3.8. Useful Techniques 877
12.4. PERFORMANCE 882
12.4.1. Why are Operating Systems Slow? 882
12.4.2. What Should be Optimized? 883
12.4.3. Space-Time Trade-offs 884
12.4.4. Caching 887
12.4.5. Hints 888
12.4.6. Exploiting Locality 888
12.5. PROJECT MANAGEMENT 889
12.4.7. Optimize the Common Case 889
12.5.1. The Mythical Man Month 890
12.5.2. Team Structure 891
12.5.3. The Role of Experience 893
12.5.4. No Silver Bullet 894
12.6. TRENDS IN OPERATING SYSTEM DESIGN 894
12.6.1. Large Address Space Operating Systems 894
12.6.2. Networking 895
12.6.3. Parallel and Distributed Systems 896
12.6.4. Multimedia 896
12.6.5. Battery-Powered Computers 896
12.6.6. Embedded Systems 897
12.7. SUMMARY 897
13.1. SUGGESTIONS FOR FURTHER READING 901
13 READING LIST AND BIBLIOGRAPHY 901
13.1.1. Introduction and General Works 902
13.1.2. Processes and Threads 902
13.1.3. Deadlocks 903
13.1.4. Memory Management 903
13.1.5. Input/Output 903
13.1.6. File Systems 904
13.1.7. Multimedia Operating Systems 905
13.1.8. Multiple Processor Systems 906
13.1.9. Security 907
13.1.10. UNIX and Linux 908
13.1.11. Windows 2000 909
13.1.12. Design Principles 910
13.2 ALPHABETICAL BIBLIOGRAPHY 911
INDEX 935