PART 1 Motivation and Framework 1
Chapter1 Engineering and the Environment 2
1.1 Introduction 3
1.2 What Is“The Environment”? 3
1.3 Framing Environmental Issues 4
1.3.1 Good Change or Bad? 5
1.3.2 Enter Public Policy 6
1.4 The Role of Engineering 7
1.5 Approaches to “Green”Engineering 9
1.5.1 Sources of Environmental Impacts 10
1.5.2 A Life Cycle Perspective 11
1.5.3 Industrial Ecology and Sustainable Development 12
1.6 Basic Engineering Principles 13
1.6.1 Conservation of Mass 13
1.6.2 Conservation of Energy 15
1.6.3 The Use of Mathematical Models 16
1.7 What Lies Ahead 17
1.8 References 17
1.9 Problems 18
Chapter 2 Overview of Environmental Issues 19
2.1 Introduction 20
2.2 Environmental Concerns 21
2.3 Atmospheric Emissions 21
2.3.1 Criteria Air Pollutants 22
2.3.3 Acid Deposition 31
2.3.2 Air Toxics 31
2.3.4 Stratospheric Ozone Depletion 35
2.3.5 Greenhouse Gases 37
2.4 Water Pollution 40
2.4.1 Sources and Uses of Water 41
2.4.2 Major Water Contaminants 41
2.4.3 Drinking Water Quality 46
2.4.4 Surface Water Quality 47
2.4.5 Groundwater Quality 50
2.5 Solid and Hazardous Wastes 55
2.5.1 Hazardous Wastes 55
2.5.2 Nonhazardous Wastes 58
2.6 Radioactive Wastes 62
2.6.1 High-Level Waste 64
2.6.2 Transuranic Wastes 66
2.6.3 Low-Level Waste 66
2.6.4 Uranium Mill Tailings 68
2.7 Depletion of Natural Resources 68
2.8 Land Use and Ecological Impacts 71
2.8.1 Biodiversity 72
2.8.2 Loss of Habitat 74
2.8.3 Marine Ecosystems 74
2.8.4 Land Use Practices 76
2.9 References 77
2.10 Problems 78
PART 2 Technology Design for the Environment 81
Chapter 3 Automobiles and the Environment 82
3.1 The Automobile and Society 83
3.2 Environmental Impacts of the Automobile 84
3.2.1 Urban Air Pollution 86
3.2.2 Greenhouse Gas Emissions 89
3.2.3 Materials Use and Solid Waste 92
3.2.4 Other Environmental Impacts 96
3.3 Fuel and Energy Requirements 97
3.3.1 Power for Cruising 98
3.3.2 Power for Hill Climbing 100
3.3.3 Power for Acceleration 101
3.3.4 Energy Efficiency 102
3.3.5 Fuel Consumption 105
3.4.1 Designing for Energy Efficiency 109
3.4 Engineering Cleaner Cars 109
3.4.2 Understanding Pollutant Formation 111
3.4.3 Designing for Low Emissions 115
3.4.4 Alternative Fuels 116
3.4.5 Alternative Vehicles 118
3.5 Conclusion 121
3.6 References 122
3.7 Problems 123
Chapter 4 Batteries and the Environment 128
4.1 Introduction 129
4.1.1 Environmental Concerns 130
4.1.2 Recent “Green”Efforts 133
4.2.1 A Brief History 135
4.2 Battery Basics 135
4.2.2 How a Battery Works 137
4.2.3 Theoretical Voltage 140
4.2.4 Theoretical Capacity 141
4.2.5 Actual Capacity 143
4.3 Battery Features 144
4.3.1 Voltage versus Time 144
4.3.2 Effect of Operating Temperature 148
4.3.3 Shelf Life 149
4.3.4 Lifetime of Rechargeable Batteries 150
4.3.5 Battery Rechargers 152
4.4 Applications That Use Batteries 153
4.4.1 Discharge Characteristics Based on Current Draw 153
4.5 Conclusion 155
4.4.2 Using Multiple Batteries 155
4.6 References 156
4.7 Problems 157
Chapter 5 Electric Power Plants and the Environment 161
5.1 The Role of Electric Power 162
5.2 Overview of Environmental Impacts 163
5.2.1 Environmental Impacts of Fossil Fuels 164
5.2.2 Environmental Impacts of Nuclear Power 175
5.2.3 Environmental Impacts of Renewable Energy 178
5.3 Electric Power Fundamentals 179
5.3.1 Current, Voltage,and Power 180
5.3.2 Energy, Heat,and Work 180
5.3.3 Electromechanical Generators 181
5.3.4 Turbines and Energy Sources 182
5.4 Performance of Fossil Fuel Power Plants 183
5.4.1 Steam Electric Plants 183
5.4.2 Gas Turbine Plants 193
5.4.3 Combined-Cycle Plants 194
5.5 Reducing Environmental Impacts 196
5.5.1 Environmental Control Technology 197
5.5.2 Improving Energy Efficiency 207
5.6 Alternative Energy Sources and Technology 210
5.6.1 Nuclear Energy 212
5.6.2 Biomass and Refuse Energy 213
5.6.3 Geothermal Energy 214
5.6.4 Hydroelectric Energy 215
5.6.5 Wind Energy 217
5.6.6 Electrochemical Generators 220
5.6.7 Photovoltaic Generators 222
5.7 Comparing Environmental Impacts 224
5.8 Looking Ahead 225
5.8.1 Environmental Outlook 226
5.8.2 Technology Outlook 227
5.9 Conclusion 228
5.10 References 229
5.11 Problems 230
Chapter 6 Refrigeration and the Environment 235
6.1 Introduction 236
6.2 Environmental Overview 237
6.3 Alternative Refrigerants 239
6.4 Fundamentals of Refrigeration 242
6.4.1 Primary Energy Flows 242
6.4.2 The Refrigeration Cycle 245
6.4.3 Some Basic Questions 247
6.4.4 Thermodynamic Relationships 247
6.4.5 Refrigerant Properties 250
6.5 Designing a CFC-Free Refrigerator 252
6.5.1 Refrigerant Mass Flow 253
6.5.2 Refrigerant Charge 256
6.5.3 Refrigeration Cycle Efficiency 257
6.5.4 Comparison of Alternative Refrigerants 259
6.6.1 Compressor Energy Requirements 262
6.6 Reducing Energy Consumption 262
6.6.2 Auxiliary Energy Requirements 265
6.6.3 Total Energy Consumption 265
6.6.4 Effect of Thermal Insulation Design 266
6.6.5 Energy Impact of CFC Substitutes 270
6.7 Trends and Future Technology 270
6.7.1 Energy Efficiency Standards 271
6.7.2 The Fridge of the Future 273
6.8 Conclusion 275
6.9 References 275
6.10 Problems 276
Chapter 7 Environmental Life Cycle Assessments 280
7.1 Introduction 281
7.2.1 Making Decisions about Product Design 282
7.2 Principles of Life Cycle Assessment 282
7.2.2 Steps in a Life Cycle Assessment 283
7.2.3 Scope of a Life Cycle Assessment 285
7.3 Inventory Analysis 286
7.3.1 Major Components of an Inventory Analysis 286
7.3.2 Case Study of a Computer Housing 287
7.3.3 Quantitative Analysis of the Computer Housing 291
7.4 Impact Analysis 300
7.4.1 Categories of Impacts 300
7.4.2 Ranking Environmental Impacts 301
7.4.3 Quantification of Impacts 303
7.5.1 Improving Electrical Shielding of the Computer Housing 306
7.5 Improvement Analysis 306
7.5.2 Improving Waste Management of the Computer Housing 309
7.6 Conclusion 313
7.7 References 314
7.8 Problems 315
PART 3 Modeling Environmental Processes 319
Chapter 8 Controlling Urban Smog 320
8.1 Introduction to Urban Air Pollution 321
8.1.1 London Smog 321
8.1.2 Los Angeles Smog 321
8.2 Achieving Air Quality Goals 323
8.2.1 Units of Measurement 323
8.2.3 Sources of Emissions 324
8.2.2 Air Quality Standards 324
8.2.4 The Role of Engineers 325
8.3 Accumulation of Pollutants in an Urban Area 327
8.3.1 Nonreacting Pollutants under Steady State Conditions 328
8.3.2 Nonreacting Pollutants under Dynamic Conditions 335
8.3.3 Reactive Pollutants under Dynamic Conditions 339
8.4 Ozone in the Atmosphere 340
8.4.1 Urban Ozone Levels 341
8.4.2 Ozone Health Effects 342
8.4.3 Bad Ozone versus Good Ozone 343
8.5 Formation of Ozone in Urban Areas 343
8.5.1 The Photochemical Cycle 344
8.5.2 The Role of Hydrocarbons 347
8.5.3 Photochemical Smog and Meteorology 349
8.6 Controlling Ozone Formation 350
8.6.1 Effect of VOC Concentration on Ozone Formation 350
8.6.2 Effect of NOx Concentration on Ozone Formation 351
8.6.3 Ozone Isopleth Diagrams 352
8.6.4 Control Strategy Regimes 356
8.6.5 Ozone Formation Potential of Hydrocarbons 358
8.7 Conclusion 363
8.8 References 364
8.9 Problems 364
Chapter 9 PCBs in the Aquatic Environment 369
9.1 Introduction:What are PCBs? 370
9.2 Toxicity of PCBs 371
9.3.1 Fate and Concentration of PCBs 372
9.3 PCBs in the Environment 372
9.3.2 Environmental Standards for PCBs 375
9.4 Chemistry of PCBs 376
9.5 Release of PCBs from Sources 379
9.5.1 Pathways of Release 379
9.5.2 Example:PCBs in Boston Harbor 379
9.6 Movement of PCBs in Receiving Waters 381
9.6.1 Mixing and Dilution 382
9.6.2 Settling of Particles 386
9.7 Partitioning of PCBs in Receiving Water Systems 390
9.7.1 Partitioning between River Water and Sediments 390
9.7.2 Partitioning between River Water and Fish 395
9.7.3 PCBs in the Hudson River 396
9.8 Conclusion 398
9.9 References 399
9.10 Problems 400
Chapter 10 Human Exposure to Toxic Metals 402
10.1 Introduction 403
10.2 A Brief History of Metallurgy 403
10.3 Release of Metals to the Environment:Evidence of Adverse Effects 406
10.4 Pathways of Human Exposure to Trace Metals 407
10.4.1 Distribution of Trace Metals in the Environment 407
10.4.2 Trace Metals in the Air 409
10.4.3 Trace Metals in Water 415
10.4.4 Trace Metals in Food 415
10.4.6 Quantifying Total Human Exposure 416
10.4.5 Dust and Soil 416
10.5 Total Dose of Absorbed Metals 417
10.6 Doses in a Population 419
10.7 Response to a Dose 426
10.8 Conclusion 430
10.9 References 430
10.10 Problems 431
Chapter 11 CFCs and the Ozone Hole 434
11.1 Introduction:The Problem of Ozone Depletion 435
11.2 The Natural Ozone Layer 436
11.2.1 The Structure of the Atmosphere 436
11.2.2 Ultraviolet Radiation from the Sun 437
11.2.3 Formation and Destruction of Ozone 439
11.2.4 Measurement of Ozone Concentrations 440
11.3 Chlorofluorocarbons(CFCs) and Halocarbons 445
11.3.1 What Are CFCs? 446
11.3.2 The Naming Convention for CFCs 447
11.4 CFC Destruction of Stratospheric Ozone 448
11.4.1 Mechanisms of Ozone Destruction by CFCs in the Midlatitudes 449
11.4.2 Mechanisms of Ozone Destruction by CFCs in the Antarctic 451
11.5 Quantifying Ozone Destruction by CFCs:The Mass Balance Model 453
11.5.1 Calculating Amounts of CFC in the Atmosphere 454
11.5.2 Calculating Amounts of Ozone Depletion from CFCs 459
11.6 Solutions to the CFC Problem:The Montreal Protocol 462
11.6.1 Ozone Depletion Potential 464
11.6.2 Potential Environmental Trade-offs 465
11.7 Conclusion 466
11.8 References 466
11.9 Problems 467
Chapter 12 Global Warming and the Greenhouse Effect 469
12.1 Introduction 470
12.1.1 Greenhouse Gas Emissions and Atmospheric Change 470
12.1.2 The Global Climate System 472
12.1.3 Chapter Overview 473
12.2 Fundamentals of the Greenhouse Effect 474
12.2.1 The Nature of Radiative Energy 474
12.2.2 Solar Energy Reaching Earth 475
12.2.3 A Simple Earth Energy Balance 476
12.2.4 Temperature and the Radiative Spectrum 478
12.2.5 The Earth s Atmosphere 480
12.2.6 Radiative Properties of the Atmosphere 481
12.2.7 Greenhouse Effect Defined 483
12.2.8 Earth Energy Balance Revisited 483
12.2.9 Actual Radiative Balance 485
12.3 Radiative Forcing of Climate Change 486
12.3.1 Modes of Radiative Forcing 487
12.3.2 Net Forcing from Atmospheric Changes 488
12.3.3 Quantifying Radiative Forcing 490
12.3.4 Radiative Forcing versus Concentration 490
12.3.5 Radiative Forcing in the Industrial Age 493
12.3.6 Equivalent CO2 Concentration 497
12.4.1 Restoring the Earth’s Energy Balance 498
12.4 Temperature Changes from Radiative Forcing 498
12.4.2 Evaluating the Climate Sensitivity Factor 499
12.4.3 Results from Observational Data 499
12.4.4 Results from Climate Models 501
12.4.5 Time Lags and Temperature Commitment 503
12.5 Climate Change Predictions 504
12.5.1 Temperature Change since Preindustrial Times 505
12.5.2 Global Warmning in the 21st Century 505
12.6 Historical Temperature Changes 508
12.7 Stabilizing Atmospheric Concentrations 510
12.7.1 Atmospheric Lifetime of Greenhouse Gases 511
12.7.2 The Carbon Cycle 513
12.7.3 Stabilization Scenarios 516
12.8 CO2 Emissions and Energy Use 518
12.8.1 Carbon Content of Fuels 519
12.8.2 Energy Content of Fuels 520
12.8.3 Carbon Intensity of Fuels 521
12.8.4 Regional Sources of CO2 Emissions 522
12.9 Reducing Greenhouse Gas Emissions 524
12.9.1 Factors Affecting CO2 Emissions Growth 524
12.9.2 Reducing Energy Intensity 527
12.9.3 Reducing Carbon Intensity 528
12.9.4 Reducing Non-CO2 Emissions 532
12.9.5 Evaluating Emission Reduction Strategies 533
12.10 Future Outlook 536
12.10.1 The Kyoto Protocol 536
12.11 Conclusion 537
12.10.2 Beyond Kyoto 537
12.12 References 538
12.13 Problems 539
PART 4 Topics in Environmental Policy Analysis 543
Chapter 13 Economics and the Environment 544
13.1 Introduction 545
13.2 Fundamentals of Engineering Economics 545
13.2.1 Categories of Cost 545
13.2.2 Cash Flow Diagrams 545
13.3 The Time Value of Money 546
13.3.1 Present and Future Amounts 547
13.3.2 Uniform Series Amounts 549
13.3.3 Summary of Key Equations 553
13.4 Evaluating Total Life Cycle Cost 556
13.4.1 Net Present Value 557
13.4.2 Levelized Annual Cost 558
13.4.3 Cost per Unit of Product 560
13.4.4 Average Cost-Effectiveness 561
13.5 Comparing Technology Options 562
13.5.1 Comparisons Based on Net Present Value 562
13.5.2 Comparisons Based on Levelized Annual Cost 564
13.5.3 Comparisons Based on Payback Period 565
13.5.4 Comparisons Based on Average Cost-Effectiveness 566
13.6 Marginal Cost Analysis 567
13.6.1 Marginal Cost-Effectiveness 569
13.6.2 Application to Market-Based Solutions 570
13.7.1 Effect of Inflation 571
13.7 Choosing an Interest Rate 571
13.7.2 Constant versus Current Dollars 572
13.7.3 Real versus Nominal Interest Rates 574
13.7.4 The Analysis Perspective 575
13.7.5 Taxes and Depreciation 576
13.8 Cost-Benefit Analysis 577
13.8.1 The Nature of Economic Benefits 578
13.8.2 A General Cost Optimization Framework 580
13.8.3 Limitations of Cost-Benefit Analysis 582
13.9 Conclusion 583
13.10 References 583
13.11 Problems 584
Chapter 14 Risk Assessment and Decision Analysis 589
14.2 Defining Environmental Risks 590
14.1 Introduction 590
14.3 How Safe is Safe? 593
14.4 Risk Assessment Methodology 593
14.4.1 Hazard Assessment 593
14.4.2 Dose-Response Assessment 594
14.4.3 Exposure Assessment 597
14.4.4 Risk Characterization 599
14.5 Assessing Risk for Carcinogens 599
14.5.1 Chronic Daily Intake 600
14.5.2 Potency Factor 600
14.5.3 Incremental Risk 601
14.5.4 Levels of Acceptable Risk 602
14.5.5 Application to Contaminated Sites 603
14.6 Assessing Risk for Noncarcinogens 604
14.6.1 Reference Dose 605
14.6.2 Hazard Quotient 607
14.7 Limitations of Risk Assessments 608
14.7.1 Sources of Uncertainty 609
14.7.2 Dealing with Uncertainty 610
14.8 Approaches to Risk Management 611
14.8.1 Defining Goals and Procedures 612
14.8.2 Finding Workable Solutions 613
14.9 Introduction to Decision Analysis 615
14.10 Influence Diagrams 616
14.10.1 Symbols and Conventions 618
14.10.2 An Environmental Example 619
14.10.3 Further Applications 620
14.11 Decision Trees 621
14.11.1 Building a Decision Tree 621
14.11.2 Solving a Decision Tree 624
14.11.3 Adding Complexity 625
14.12 Conclusion 628
14.13 References 630
14.14 Problems 630
Chapter 15 Environmental Forecasting 634
15.1 Introduction 635
15.2 Framing the Question 635
15.2.1 Environmental Attributes of Concern 636
15.2.2 Forecasts versus Scenarios 636
15.3 Modeling the Future 637
15.2.3 Time Period of Concern 637
15.2.4 Spatial Scale of Concern 637
15.3.1 Drivers of Environmental Change 638
15.3.2 Modeling Environmental Processes 638
15.4 Population Growth Models 639
15.4.1 Annual Growth Rate Model 640
15.4.2 Exponential Growth Model 643
15.4.3 Logistic Growth Model 644
15.4.4 Demographic Models 647
15.5 Economic Growth Models 654
15.5.1 Activity Coefficients 656
15.5.2 Economic Growth and Energy Use 657
15.5.3 Input-Output Models 660
15.5.4 Macroeconomic Models 663
15.6 Technological Change 666
15.6.1 Types of Technology Change 667
15.6.2 Scenarios of Alternative Technologies 668
15.6.3 Rates of Technology Adoption 669
15.6.4 Rates of Technology Innovation 672
15.7 Conclusion 677
15.8 References 677
15.9 Problems 678
Appendix 681
Atomic Weight of Selected Elements 681
Si Unit Prefixes 682
Useful Conversion Factors 682