《工程与环境引论 影印版》PDF下载

  • 购买积分:19 如何计算积分?
  • 作  者:(美)EdwardS.Rubin,(美)CliffI.Davidson著
  • 出 版 社:北京:清华大学出版社
  • 出版年份:2002
  • ISBN:7302051364
  • 页数:696 页
图书介绍:

PART 1 Motivation and Framework 1

Chapter1 Engineering and the Environment 2

1.1 Introduction 3

1.2 What Is“The Environment”? 3

1.3 Framing Environmental Issues 4

1.3.1 Good Change or Bad? 5

1.3.2 Enter Public Policy 6

1.4 The Role of Engineering 7

1.5 Approaches to “Green”Engineering 9

1.5.1 Sources of Environmental Impacts 10

1.5.2 A Life Cycle Perspective 11

1.5.3 Industrial Ecology and Sustainable Development 12

1.6 Basic Engineering Principles 13

1.6.1 Conservation of Mass 13

1.6.2 Conservation of Energy 15

1.6.3 The Use of Mathematical Models 16

1.7 What Lies Ahead 17

1.8 References 17

1.9 Problems 18

Chapter 2 Overview of Environmental Issues 19

2.1 Introduction 20

2.2 Environmental Concerns 21

2.3 Atmospheric Emissions 21

2.3.1 Criteria Air Pollutants 22

2.3.3 Acid Deposition 31

2.3.2 Air Toxics 31

2.3.4 Stratospheric Ozone Depletion 35

2.3.5 Greenhouse Gases 37

2.4 Water Pollution 40

2.4.1 Sources and Uses of Water 41

2.4.2 Major Water Contaminants 41

2.4.3 Drinking Water Quality 46

2.4.4 Surface Water Quality 47

2.4.5 Groundwater Quality 50

2.5 Solid and Hazardous Wastes 55

2.5.1 Hazardous Wastes 55

2.5.2 Nonhazardous Wastes 58

2.6 Radioactive Wastes 62

2.6.1 High-Level Waste 64

2.6.2 Transuranic Wastes 66

2.6.3 Low-Level Waste 66

2.6.4 Uranium Mill Tailings 68

2.7 Depletion of Natural Resources 68

2.8 Land Use and Ecological Impacts 71

2.8.1 Biodiversity 72

2.8.2 Loss of Habitat 74

2.8.3 Marine Ecosystems 74

2.8.4 Land Use Practices 76

2.9 References 77

2.10 Problems 78

PART 2 Technology Design for the Environment 81

Chapter 3 Automobiles and the Environment 82

3.1 The Automobile and Society 83

3.2 Environmental Impacts of the Automobile 84

3.2.1 Urban Air Pollution 86

3.2.2 Greenhouse Gas Emissions 89

3.2.3 Materials Use and Solid Waste 92

3.2.4 Other Environmental Impacts 96

3.3 Fuel and Energy Requirements 97

3.3.1 Power for Cruising 98

3.3.2 Power for Hill Climbing 100

3.3.3 Power for Acceleration 101

3.3.4 Energy Efficiency 102

3.3.5 Fuel Consumption 105

3.4.1 Designing for Energy Efficiency 109

3.4 Engineering Cleaner Cars 109

3.4.2 Understanding Pollutant Formation 111

3.4.3 Designing for Low Emissions 115

3.4.4 Alternative Fuels 116

3.4.5 Alternative Vehicles 118

3.5 Conclusion 121

3.6 References 122

3.7 Problems 123

Chapter 4 Batteries and the Environment 128

4.1 Introduction 129

4.1.1 Environmental Concerns 130

4.1.2 Recent “Green”Efforts 133

4.2.1 A Brief History 135

4.2 Battery Basics 135

4.2.2 How a Battery Works 137

4.2.3 Theoretical Voltage 140

4.2.4 Theoretical Capacity 141

4.2.5 Actual Capacity 143

4.3 Battery Features 144

4.3.1 Voltage versus Time 144

4.3.2 Effect of Operating Temperature 148

4.3.3 Shelf Life 149

4.3.4 Lifetime of Rechargeable Batteries 150

4.3.5 Battery Rechargers 152

4.4 Applications That Use Batteries 153

4.4.1 Discharge Characteristics Based on Current Draw 153

4.5 Conclusion 155

4.4.2 Using Multiple Batteries 155

4.6 References 156

4.7 Problems 157

Chapter 5 Electric Power Plants and the Environment 161

5.1 The Role of Electric Power 162

5.2 Overview of Environmental Impacts 163

5.2.1 Environmental Impacts of Fossil Fuels 164

5.2.2 Environmental Impacts of Nuclear Power 175

5.2.3 Environmental Impacts of Renewable Energy 178

5.3 Electric Power Fundamentals 179

5.3.1 Current, Voltage,and Power 180

5.3.2 Energy, Heat,and Work 180

5.3.3 Electromechanical Generators 181

5.3.4 Turbines and Energy Sources 182

5.4 Performance of Fossil Fuel Power Plants 183

5.4.1 Steam Electric Plants 183

5.4.2 Gas Turbine Plants 193

5.4.3 Combined-Cycle Plants 194

5.5 Reducing Environmental Impacts 196

5.5.1 Environmental Control Technology 197

5.5.2 Improving Energy Efficiency 207

5.6 Alternative Energy Sources and Technology 210

5.6.1 Nuclear Energy 212

5.6.2 Biomass and Refuse Energy 213

5.6.3 Geothermal Energy 214

5.6.4 Hydroelectric Energy 215

5.6.5 Wind Energy 217

5.6.6 Electrochemical Generators 220

5.6.7 Photovoltaic Generators 222

5.7 Comparing Environmental Impacts 224

5.8 Looking Ahead 225

5.8.1 Environmental Outlook 226

5.8.2 Technology Outlook 227

5.9 Conclusion 228

5.10 References 229

5.11 Problems 230

Chapter 6 Refrigeration and the Environment 235

6.1 Introduction 236

6.2 Environmental Overview 237

6.3 Alternative Refrigerants 239

6.4 Fundamentals of Refrigeration 242

6.4.1 Primary Energy Flows 242

6.4.2 The Refrigeration Cycle 245

6.4.3 Some Basic Questions 247

6.4.4 Thermodynamic Relationships 247

6.4.5 Refrigerant Properties 250

6.5 Designing a CFC-Free Refrigerator 252

6.5.1 Refrigerant Mass Flow 253

6.5.2 Refrigerant Charge 256

6.5.3 Refrigeration Cycle Efficiency 257

6.5.4 Comparison of Alternative Refrigerants 259

6.6.1 Compressor Energy Requirements 262

6.6 Reducing Energy Consumption 262

6.6.2 Auxiliary Energy Requirements 265

6.6.3 Total Energy Consumption 265

6.6.4 Effect of Thermal Insulation Design 266

6.6.5 Energy Impact of CFC Substitutes 270

6.7 Trends and Future Technology 270

6.7.1 Energy Efficiency Standards 271

6.7.2 The Fridge of the Future 273

6.8 Conclusion 275

6.9 References 275

6.10 Problems 276

Chapter 7 Environmental Life Cycle Assessments 280

7.1 Introduction 281

7.2.1 Making Decisions about Product Design 282

7.2 Principles of Life Cycle Assessment 282

7.2.2 Steps in a Life Cycle Assessment 283

7.2.3 Scope of a Life Cycle Assessment 285

7.3 Inventory Analysis 286

7.3.1 Major Components of an Inventory Analysis 286

7.3.2 Case Study of a Computer Housing 287

7.3.3 Quantitative Analysis of the Computer Housing 291

7.4 Impact Analysis 300

7.4.1 Categories of Impacts 300

7.4.2 Ranking Environmental Impacts 301

7.4.3 Quantification of Impacts 303

7.5.1 Improving Electrical Shielding of the Computer Housing 306

7.5 Improvement Analysis 306

7.5.2 Improving Waste Management of the Computer Housing 309

7.6 Conclusion 313

7.7 References 314

7.8 Problems 315

PART 3 Modeling Environmental Processes 319

Chapter 8 Controlling Urban Smog 320

8.1 Introduction to Urban Air Pollution 321

8.1.1 London Smog 321

8.1.2 Los Angeles Smog 321

8.2 Achieving Air Quality Goals 323

8.2.1 Units of Measurement 323

8.2.3 Sources of Emissions 324

8.2.2 Air Quality Standards 324

8.2.4 The Role of Engineers 325

8.3 Accumulation of Pollutants in an Urban Area 327

8.3.1 Nonreacting Pollutants under Steady State Conditions 328

8.3.2 Nonreacting Pollutants under Dynamic Conditions 335

8.3.3 Reactive Pollutants under Dynamic Conditions 339

8.4 Ozone in the Atmosphere 340

8.4.1 Urban Ozone Levels 341

8.4.2 Ozone Health Effects 342

8.4.3 Bad Ozone versus Good Ozone 343

8.5 Formation of Ozone in Urban Areas 343

8.5.1 The Photochemical Cycle 344

8.5.2 The Role of Hydrocarbons 347

8.5.3 Photochemical Smog and Meteorology 349

8.6 Controlling Ozone Formation 350

8.6.1 Effect of VOC Concentration on Ozone Formation 350

8.6.2 Effect of NOx Concentration on Ozone Formation 351

8.6.3 Ozone Isopleth Diagrams 352

8.6.4 Control Strategy Regimes 356

8.6.5 Ozone Formation Potential of Hydrocarbons 358

8.7 Conclusion 363

8.8 References 364

8.9 Problems 364

Chapter 9 PCBs in the Aquatic Environment 369

9.1 Introduction:What are PCBs? 370

9.2 Toxicity of PCBs 371

9.3.1 Fate and Concentration of PCBs 372

9.3 PCBs in the Environment 372

9.3.2 Environmental Standards for PCBs 375

9.4 Chemistry of PCBs 376

9.5 Release of PCBs from Sources 379

9.5.1 Pathways of Release 379

9.5.2 Example:PCBs in Boston Harbor 379

9.6 Movement of PCBs in Receiving Waters 381

9.6.1 Mixing and Dilution 382

9.6.2 Settling of Particles 386

9.7 Partitioning of PCBs in Receiving Water Systems 390

9.7.1 Partitioning between River Water and Sediments 390

9.7.2 Partitioning between River Water and Fish 395

9.7.3 PCBs in the Hudson River 396

9.8 Conclusion 398

9.9 References 399

9.10 Problems 400

Chapter 10 Human Exposure to Toxic Metals 402

10.1 Introduction 403

10.2 A Brief History of Metallurgy 403

10.3 Release of Metals to the Environment:Evidence of Adverse Effects 406

10.4 Pathways of Human Exposure to Trace Metals 407

10.4.1 Distribution of Trace Metals in the Environment 407

10.4.2 Trace Metals in the Air 409

10.4.3 Trace Metals in Water 415

10.4.4 Trace Metals in Food 415

10.4.6 Quantifying Total Human Exposure 416

10.4.5 Dust and Soil 416

10.5 Total Dose of Absorbed Metals 417

10.6 Doses in a Population 419

10.7 Response to a Dose 426

10.8 Conclusion 430

10.9 References 430

10.10 Problems 431

Chapter 11 CFCs and the Ozone Hole 434

11.1 Introduction:The Problem of Ozone Depletion 435

11.2 The Natural Ozone Layer 436

11.2.1 The Structure of the Atmosphere 436

11.2.2 Ultraviolet Radiation from the Sun 437

11.2.3 Formation and Destruction of Ozone 439

11.2.4 Measurement of Ozone Concentrations 440

11.3 Chlorofluorocarbons(CFCs) and Halocarbons 445

11.3.1 What Are CFCs? 446

11.3.2 The Naming Convention for CFCs 447

11.4 CFC Destruction of Stratospheric Ozone 448

11.4.1 Mechanisms of Ozone Destruction by CFCs in the Midlatitudes 449

11.4.2 Mechanisms of Ozone Destruction by CFCs in the Antarctic 451

11.5 Quantifying Ozone Destruction by CFCs:The Mass Balance Model 453

11.5.1 Calculating Amounts of CFC in the Atmosphere 454

11.5.2 Calculating Amounts of Ozone Depletion from CFCs 459

11.6 Solutions to the CFC Problem:The Montreal Protocol 462

11.6.1 Ozone Depletion Potential 464

11.6.2 Potential Environmental Trade-offs 465

11.7 Conclusion 466

11.8 References 466

11.9 Problems 467

Chapter 12 Global Warming and the Greenhouse Effect 469

12.1 Introduction 470

12.1.1 Greenhouse Gas Emissions and Atmospheric Change 470

12.1.2 The Global Climate System 472

12.1.3 Chapter Overview 473

12.2 Fundamentals of the Greenhouse Effect 474

12.2.1 The Nature of Radiative Energy 474

12.2.2 Solar Energy Reaching Earth 475

12.2.3 A Simple Earth Energy Balance 476

12.2.4 Temperature and the Radiative Spectrum 478

12.2.5 The Earth s Atmosphere 480

12.2.6 Radiative Properties of the Atmosphere 481

12.2.7 Greenhouse Effect Defined 483

12.2.8 Earth Energy Balance Revisited 483

12.2.9 Actual Radiative Balance 485

12.3 Radiative Forcing of Climate Change 486

12.3.1 Modes of Radiative Forcing 487

12.3.2 Net Forcing from Atmospheric Changes 488

12.3.3 Quantifying Radiative Forcing 490

12.3.4 Radiative Forcing versus Concentration 490

12.3.5 Radiative Forcing in the Industrial Age 493

12.3.6 Equivalent CO2 Concentration 497

12.4.1 Restoring the Earth’s Energy Balance 498

12.4 Temperature Changes from Radiative Forcing 498

12.4.2 Evaluating the Climate Sensitivity Factor 499

12.4.3 Results from Observational Data 499

12.4.4 Results from Climate Models 501

12.4.5 Time Lags and Temperature Commitment 503

12.5 Climate Change Predictions 504

12.5.1 Temperature Change since Preindustrial Times 505

12.5.2 Global Warmning in the 21st Century 505

12.6 Historical Temperature Changes 508

12.7 Stabilizing Atmospheric Concentrations 510

12.7.1 Atmospheric Lifetime of Greenhouse Gases 511

12.7.2 The Carbon Cycle 513

12.7.3 Stabilization Scenarios 516

12.8 CO2 Emissions and Energy Use 518

12.8.1 Carbon Content of Fuels 519

12.8.2 Energy Content of Fuels 520

12.8.3 Carbon Intensity of Fuels 521

12.8.4 Regional Sources of CO2 Emissions 522

12.9 Reducing Greenhouse Gas Emissions 524

12.9.1 Factors Affecting CO2 Emissions Growth 524

12.9.2 Reducing Energy Intensity 527

12.9.3 Reducing Carbon Intensity 528

12.9.4 Reducing Non-CO2 Emissions 532

12.9.5 Evaluating Emission Reduction Strategies 533

12.10 Future Outlook 536

12.10.1 The Kyoto Protocol 536

12.11 Conclusion 537

12.10.2 Beyond Kyoto 537

12.12 References 538

12.13 Problems 539

PART 4 Topics in Environmental Policy Analysis 543

Chapter 13 Economics and the Environment 544

13.1 Introduction 545

13.2 Fundamentals of Engineering Economics 545

13.2.1 Categories of Cost 545

13.2.2 Cash Flow Diagrams 545

13.3 The Time Value of Money 546

13.3.1 Present and Future Amounts 547

13.3.2 Uniform Series Amounts 549

13.3.3 Summary of Key Equations 553

13.4 Evaluating Total Life Cycle Cost 556

13.4.1 Net Present Value 557

13.4.2 Levelized Annual Cost 558

13.4.3 Cost per Unit of Product 560

13.4.4 Average Cost-Effectiveness 561

13.5 Comparing Technology Options 562

13.5.1 Comparisons Based on Net Present Value 562

13.5.2 Comparisons Based on Levelized Annual Cost 564

13.5.3 Comparisons Based on Payback Period 565

13.5.4 Comparisons Based on Average Cost-Effectiveness 566

13.6 Marginal Cost Analysis 567

13.6.1 Marginal Cost-Effectiveness 569

13.6.2 Application to Market-Based Solutions 570

13.7.1 Effect of Inflation 571

13.7 Choosing an Interest Rate 571

13.7.2 Constant versus Current Dollars 572

13.7.3 Real versus Nominal Interest Rates 574

13.7.4 The Analysis Perspective 575

13.7.5 Taxes and Depreciation 576

13.8 Cost-Benefit Analysis 577

13.8.1 The Nature of Economic Benefits 578

13.8.2 A General Cost Optimization Framework 580

13.8.3 Limitations of Cost-Benefit Analysis 582

13.9 Conclusion 583

13.10 References 583

13.11 Problems 584

Chapter 14 Risk Assessment and Decision Analysis 589

14.2 Defining Environmental Risks 590

14.1 Introduction 590

14.3 How Safe is Safe? 593

14.4 Risk Assessment Methodology 593

14.4.1 Hazard Assessment 593

14.4.2 Dose-Response Assessment 594

14.4.3 Exposure Assessment 597

14.4.4 Risk Characterization 599

14.5 Assessing Risk for Carcinogens 599

14.5.1 Chronic Daily Intake 600

14.5.2 Potency Factor 600

14.5.3 Incremental Risk 601

14.5.4 Levels of Acceptable Risk 602

14.5.5 Application to Contaminated Sites 603

14.6 Assessing Risk for Noncarcinogens 604

14.6.1 Reference Dose 605

14.6.2 Hazard Quotient 607

14.7 Limitations of Risk Assessments 608

14.7.1 Sources of Uncertainty 609

14.7.2 Dealing with Uncertainty 610

14.8 Approaches to Risk Management 611

14.8.1 Defining Goals and Procedures 612

14.8.2 Finding Workable Solutions 613

14.9 Introduction to Decision Analysis 615

14.10 Influence Diagrams 616

14.10.1 Symbols and Conventions 618

14.10.2 An Environmental Example 619

14.10.3 Further Applications 620

14.11 Decision Trees 621

14.11.1 Building a Decision Tree 621

14.11.2 Solving a Decision Tree 624

14.11.3 Adding Complexity 625

14.12 Conclusion 628

14.13 References 630

14.14 Problems 630

Chapter 15 Environmental Forecasting 634

15.1 Introduction 635

15.2 Framing the Question 635

15.2.1 Environmental Attributes of Concern 636

15.2.2 Forecasts versus Scenarios 636

15.3 Modeling the Future 637

15.2.3 Time Period of Concern 637

15.2.4 Spatial Scale of Concern 637

15.3.1 Drivers of Environmental Change 638

15.3.2 Modeling Environmental Processes 638

15.4 Population Growth Models 639

15.4.1 Annual Growth Rate Model 640

15.4.2 Exponential Growth Model 643

15.4.3 Logistic Growth Model 644

15.4.4 Demographic Models 647

15.5 Economic Growth Models 654

15.5.1 Activity Coefficients 656

15.5.2 Economic Growth and Energy Use 657

15.5.3 Input-Output Models 660

15.5.4 Macroeconomic Models 663

15.6 Technological Change 666

15.6.1 Types of Technology Change 667

15.6.2 Scenarios of Alternative Technologies 668

15.6.3 Rates of Technology Adoption 669

15.6.4 Rates of Technology Innovation 672

15.7 Conclusion 677

15.8 References 677

15.9 Problems 678

Appendix 681

Atomic Weight of Selected Elements 681

Si Unit Prefixes 682

Useful Conversion Factors 682