《过程设计原理-合成、分析和评估:英文》PDF下载

  • 购买积分:22 如何计算积分?
  • 作  者:(美)塞德(Sandler,W.D.)等著
  • 出 版 社:北京:化学工业出版社
  • 出版年份:2002
  • ISBN:7502532706
  • 页数:824 页
图书介绍:在文件精神指导下,全国普通高等学校尤其是重点高校中兴起了使用国外教材开展教学活动的潮流。如生物技术与工程、环境科学与工程、材料科学与工程及作为其学科基础理论重要组成部分的化学技术和化学工程技术又是这股潮流中最为活跃的领域之一。在教育部“化工类专业人才培养方案及教学内容体系改革的研究与实践”项目组及“化工类专业创新人才培养模式、教学内容、教学方法和教学技术改革的研究与实践”项目组和“全国本科化学工程与工艺专业教学指导委员会”的指导和支持下,化学工业出版社及时启动了引进国外名校名著的教材工程。

Part One PROCESS INVENTION—HEURISTICS AND ANALYSIS 3

1.The Design Process 3

1.0 Objectives 3

1.1 Primitive Design Problems 3

Typical Primitive Design Problem 5

Process Design Team 5

Industrial Consultants 5

1.2 Steps in Designing and Retrofitting Chemical Processes 6

Assess Primitive Problem 6

Survey Literature 8

Process Creation 10

Development of Base Case 10

Detailed Process Synthesis Using Algorithmic Methods 11

Plantwide Controllability Assessment 11

Detailed Design,Equipment Sizing and Cost Estimation,Profitability Analysis,and Optimization 12

Written Process Design Report and Oral Presentation 12

Final Design,Construction,Start-up,and Operation 12

Summary 13

1.3 Environmental Protection 13

Environmental Issues 13

Environmental Factors in Process Design 15

Environmental Design Problems 18

1.4 Safety Considerations 19

Safety Issues 19

Design Approaches Toward Safe Chemical Plants 22

1.5 Engineering Ethics 23

1.6 Role of Computers 27

Spreadsheets 28

Mathematical Packages 28

Process Simulators 28

Computational Guidelines 30

1.7 Summary 30

References 31

2.Process Creation 32

2.0 Objectives 32

2.1 Introduction 32

2.2 Preliminary Database Creation 32

Thermophysical Property Data 33

Environmental and Safety Data 37

Chemical Prices 37

Summary 38

2.3 Experiments 38

2.4 Preliminary Process Synthesis 38

Continuous or Batch Processing 39

Chemical State 41

Process Operations 42

Synthesis Steps 44

Example of Process Synthesis:Manufacture of Vinyl Chloride 45

Synthesis Tree 56

Heuristics 56

Algorithmic Methods 57

2.5 Development of the Base-Case Design 57

Detailed Process Flowsheet 57

Process Integration 60

Detailed Database 60

Pilot-Plant Testing 61

Process Simulation 62

2.6 Summary 62

References 62

Exercises 63

3.Simulation to Assist in Process Creation 64

3.0 Objectives 64

3.1 Introduction 65

3.2 Principles of Flowsheet Simulation 66

Process and Simulation Flowsheets 66

Unit Subroutines 77

Calculation Order 79

Recycle 79

Recycle Convergence Methods 87

Flash with Recycle Problem 89

Degrees of Freedom 90

Control Blocks—Design Specifications 91

Flash Vessel Control 94

Bidirectional Information Flow(HYSYS) 94

3.3 Synthesis of the Toluene Hydrodealkylation Process 98

Process Simulation 101

3.4 Simulation of the Monochlorobenzene Separation Process 104

Use of Process Simulators 105

3.5 Summary 106

References 107

Exercises 107

4.Heuristics for Process Synthesis 112

4.0 Objectives 112

4.1 Introduction 113

4.2 Raw Materials and Chemical Reactions 114

4.3 Distribution of Chemicals 116

Inert Species 117

Purge Streams 119

Recycle to Extinction 122

Selectivity 123

Reactive Separations 125

4.4 Separations 126

4.5 Heat Removal from and Addition to Reactors 128

Heat Removal from Exothermic Reactors 128

Heat Addition to Endothermic Reactors 131

4.6 Pumping and Compression 132

4.7 Summary 134

References 134

Exercises 135

Part Two DETAILED PROCESS SYNTHESIS—ALGORITHMIC METHODS 141

5.Synthesis of Separation Trains 141

5.0 Objectives 141

5.1 Introduction 141

5.2 Criteria for Selection of Separation Methods 145

5.3 Selection of Equipment 148

5.4 Sequencing of Ordinary Distillation Columns 150

5.5 Sequencing of General Vapor-Liquid Separation Processes 156

5.6 Sequencing of Azeotropic Distillation Columns 170

Azeotropy and Polyazeotropy 170

Residue Curves 175

Distillation Towers 178

Separation Train Synthesis 188

5.7 Separation Systems for Gas Mixtures 194

Membrane Separation by Gas Permeation 197

Adsorption 197

Absorption 198

Partial Condensation and Cryogenic Distillation 199

5.8 Separation Sequencing for Solid-Fluid Systems 199

5.9 Summary 201

References 201

Exercises 202

6.Second Law Analysis 207

6.0 Objectives 207

6.1 Introduction 207

6.2 The System and the Surroundings 210

6.3 Energy Transfer 212

6.4 Thermodynamic Properties 213

6.5 Equations for Second Law Analysis 215

6.6 Examples of Lost-Work Calculations 219

6.7 Thermodynamic Efficiency 222

6.8 Causes of Lost Work 223

6.9 Three Examples of Second Law Analysis 224

6.10 Summary 237

References 237

Exercises 238

7.Heat and Power Integration 243

7.0 Objectives 243

7.1 Introduction 244

Heat Integration Software 247

7.2 Minimizing Utilities in Heat Integration 247

Temperature-Interval Method 248

Using Graphical Displays 251

Linear Programming Method 254

7.3 Stream Matching at Minimum Utilities 256

Stream Matching at the Pinch 256

Stream Matching Using a Mixed-Integer Linear Program 263

7.4 Minimum Number of Heat Exchangers—Breaking Heat Loops 267

7.5 Optimum Approach Temperature 271

7.6 Superstructures for Minimization of Annualized Cost 274

7.7 Heat-Integrated Distillation Trains 279

Effect of Pressure on Heat Integration 279

Multiple-Effect Distillation 281

Heat Pumping,Vapor Recompression,and Reboiler Flashing 284

Superstructures for Minimization of Annualized Cost 284

7.8 Heat Engines and Heat Pumps 286

Positioning Heat Engines and Heat Pumps 289

Optimal Design 292

7.9 Summary 295

References 295

Exercises 296

Part Three DETAILED DESIGN,EQUIPMENT SIZING,ECONOMICS,AND OPTIMIZATION 303

8.Heat Exchanger Design 303

8.0 Objectives 303

8.1 Introduction 303

Heat Duty 303

Heat Transfer Media 305

Temperature-Driving Force for Heat Transfer 308

Pressure Drop 312

8.2 Equipment for Heat Exchange 312

Double-Pipe Heat Exchangers 312

Shell-and-Tube Heat Exchangers 314

Air-Cooled Heat Exchangers 319

Compact Heat Exchangers 320

Temperature-Driving Forces in Shell-and-Tube Heat Exchangers 321

8.3 Heat Transfer Coefficients and Pressure Drop 326

Estimation of Overall Heat Transfer Coefficients 327

Estimation of Individual Heat Transfer Coefficients and Frictional Pressure Drop 327

Turbulent Flow in Straight,Smooth Ducts,Pipes,and Tubes of Circular Cross Section 329

Turbulent Flow in the Annular Region Between Straight,Smooth,Concentric Pipes of Circular Cross Section 331

Turbulent Flow on the Shell Side of Shell-and-Tube Heat Exchangers 331

Heat Transfer Coefficients for Laminar-Flow,Condensation,Boiling,and Compact Heat Exchangers 332

8.4 Design of Shell-and-Tube Heat Exchangers 333

8.5 Summary 335

References 335

Exercises 336

9.Capital Cost Estimation 338

9.0 Objectives 338

9.1 Introduction 338

9.2 Cost Charts 339

Cost Indices 342

Installation Costs 342

Materials and Pressure Considerations 344

Equipment Sizes 344

Other Investment Costs 345

Lang Factor Method 348

9.3 Equations 348

Heat Exchangers 348

Cylindrical Process Vessels 349

Trays 349

Blowers and Compressors 349

9.4 ASPEN PLUS 351

Project Dates 353

Equipment Lists 353

Equipment Size and Cost Specifications 356

Remaining Investment Costs 361

Cost Indices 363

Results 364

9.5 Detailed Cost Estimation 368

9.6 Summary 369

References 369

Exercises 370

10.Profitability Analysis 374

10.0 Objectives 374

10.1 Introduction 374

10.2 Cost Sheet 375

10.3 Total Capital Investment and Approximate Profitability Measures 378

Working Capital 378

Approximate Profitability Measures 378

10.4 Time Value of Money 384

Compound Interest 384

Annuities 386

Comparison of Equipment Purchases 388

10.5 Cash Flow 391

Depreciation 392

Profitability Measures 393

Net Present Value 393

Investor's Rate of Return 394

10.6 ASPEN PLUS 396

Cost Sheet 396

Working Capital 401

Profitability Measures 401

Results 404

10.7 Detailed Cost Estimation 408

10.8 Summary 408

References 409

Exercises 409

11.Optimization of Process Flowsheets 416

11.0 Objectives 416

11.1 Introduction 416

11.2 Nonlinear Program 417

Objective Function 417

Equality Constraints 418

Inequality Constraints 418

General Formulation 419

11.3 Optimization Algorithm 419

Repeated Simulation 421

Infeasible Path Approach 421

Compromise Approach 422

Practical Aspects of Flowsheet Optimization 422

11.4 Flowsheet Optimizations—Case Studies 423

11.5 ASPEN PLUS 425

Entering the NLP 425

Adjusting the Simulation Flowsheet 426

11.6 Summary 433

References 433

Exercises 433

Part Four PLANTWIDE CONTROLLABILITY ASSESSMENT 439

12.Interaction of Process Design and Process Control 439

12.0 Objectives 439

12.1 Introduction 439

12.2 Control System Configuration 444

Classification of Process Variables 444

Degrees-of-Freedom Analysis 446

12.3 Qualitative Plantwide Control System Synthesis 449

12.4 Summary 454

References 456

Exercises 456

13.Flowsheet Controllability Analysis 457

13.0 Objectives 457

13.1 Quantitative Measures for Controllability and Resiliency 458

Relative-Gain Array(RGA) 459

Disturbance Cost and Disturbance Condition Number 467

13.2 Toward Automated Flowsheet C&R Diagnosis 471

Short-Cut C&R Diagnosis 471

Generating Low-Order Dynamic Models 472

Tutorial:C&R Analysis for Heat-Integrated Distillation Columns 474

13.3 Case Studies 480

13.4 MATLAB for C&R Analysis 493

13.5 Summary 496

References 496

Exercises 497

14.Dynamic Simulation of Process Flowsheets 500

14.0 Objectives 500

14.1 Fundamental Concepts in Dynamic Simulation 500

14.2 Dynamic Simulation Using HYSYS 501

14.3 Control-Loop Definition 502

14.4 Controller Tuning Methods 504

On-Line PI Controller Tuning 504

Model-Based PI Controller Tuning 505

14.5 Tutorial Exercise:Control of a Binary Distillation Column 509

14.6 Case Studies 522

14.7 Summary 532

References 532

Exercises 532

Part Five DESIGN REPORT 537

15.Written Process Design Report and Oral Presentation 537

15.0 Objectives 537

15.1 Written Report 538

Sections of the Report 538

Preparation of the Written Report 543

Page Format 544

Sample Design Reports 545

15.2 Oral Design Presentation 546

Typical Presentation 546

Media for the Presentation 546

Rehearsing the Presentation 547

Written Handout 547

Evaluation of the Oral Presentation 547

Videotapes 549

15.3 Award Competition 549

15.4 Summary 549

References 549

APPENDIXES 551

Ⅰ.ASPEN PLUS in Process Design 551

A-Ⅰ.1 ASPEN PLUS Input Forms 551

A-Ⅰ.2 Drawing an ASPEN PLUS Flowsheet 553

A-Ⅰ.3 ASPEN PLUS Paragraphs 553

A-Ⅰ.4 Nested Recycle Loops 554

A-Ⅰ.5 Design Specifications 557

A-Ⅰ.6 Inline FORTRAN 559

A-Ⅰ.7 Case Study:Monochlorobenzene Separation Process 565

ASPEN PLUS Simulation Flowsheet and Input 565

Interpretation of Program Output 565

Ⅱ.HYSYS in Process Design 581

A-Ⅱ.1 The HYSYS Modeling Environment 581

A-Ⅱ.2 Steady-State Simulation 584

Acyclic Processes 584

Processes Involving Recycle 605

Subflowsheets 609

Multistage Separation Using the Column Subflowsheet 609

Optimization 618

A-Ⅱ.3 Case Study 627

References 629

Ⅲ.Phase Equilibria and Process Unit Models 630

A-Ⅲ.1 Phase Equilibria 630

A-Ⅲ.2 Flash Vessels 630

A-Ⅲ.3 Pumps 642

A-Ⅲ.4 Compressors and Expanders 644

A-Ⅲ.5 Heat Exchangers 646

Heat Requirement Models 647

Shell-and-Tube Heat Exchangers 647

A-Ⅲ.6 Chemical Reactors 651

Stoichiometric Reactor Models 652

Equilibrium Reactor Models 654

Kinetic Reactor Models 655

A-Ⅲ.7 Separators 666

Split-Fraction(Black Box)Models 667

Distillation:Fenske(Winn)-Underwood-Gilliland Shortcut Design 667

Distillation:Edmister Approximate Group Method 672

Distillation:Rigorous Simulation Using the Unabridged MESH Equations 673

References 679

Ⅳ.Physical Property Estimation,Solids Handling,and Electrolytes 680

A-Ⅳ.1 Physical Property Estimation 680

Data Banks 680

Property Estimation 681

ASPEN PLUS 686

Estimating Parameters for Pure Species 690

Selection of Property Estimation Methods and Property Data Regression 692

A-Ⅳ.2 Nonconventional Components and Substreams 698

Substreams 700

Stream Classes 702

A-Ⅳ.3 Solids Handling 703

A-Ⅳ.4 Electrolytes 709

Chemical and Phase Equilibrium 709

Electrolytes in Process Simulators 716

References 720

Ⅴ.Residue Curves for Heterogeneous Systems 722

Ⅵ.Successive Quadratic Programming 723

A-Ⅵ.1 NLP and Stationarity Conditions 723

A-Ⅵ.2 Solution of the Stationarity Equations 724

References 725

Ⅶ.General Algebraic Modeling Systems(GAMS) 726

A-Ⅶ.1 Input File 727

Statements 728

A-Ⅶ.2 Expanded Features:Documentation,Variable Redeclaration,and Display 730

A-Ⅶ.3 Expanded Features:Sets,Tables,Parameters and Scalars,and Equation Grouping 734

A-Ⅶ.4 Debugging 737

References 739

Ⅷ.Design Problem Statements 740

A-Ⅷ.0 Contents and Introduction 740

A-Ⅷ.1 Petrochemicals 742

A-Ⅷ.2 Petroleum Products 748

A-Ⅷ.3 Gas Manufacture 749

A-Ⅷ.4 Foods 752

A-Ⅷ.5 Pharmaceuticals 754

A-Ⅷ.6 Polymers 755

A-Ⅷ.7 Environmental—Air Quality 758

A-Ⅷ.8 Environmental—Water Treatment 767

A-Ⅷ.9 Environmental—Soil Treatment 771

A-Ⅷ.10 Environmental—Miscellaneous 774

Ⅸ.Dynamic Simulation Using DYNAPLUS 778

A-Ⅸ.1 Introduction 778

A-Ⅸ.2 Procedure for Dynamic Simulation 779

A-Ⅸ.3 Control-Loop Definition in DYNAPLUS 779

A-Ⅸ.4 Tutorial Exercise:Control of a Binary Distillation Column 780

A-Ⅸ.5 Dynamic Simulation of the MCB Separation Process 791

Ⅹ.Heuristics for Process Equipment Design 795

Compressors and Vacuum Pumps 795

Conveyors for Particulate Solids 796

Cooling Towers 796

Crystallization from Solution 797

Disintegration 797

Distillation and Gas Absorption 798

Drivers and Power Recovery Equipment 799

Drying of Solids 799

Evaporators 800

Extraction,Liquid-Liquid 800

Filtration 801

Fluidization of Particles with Gases 801

Heat Exchangers 802

Insulation 802

Mixing and Agitation 803

Particle Size Enlargement 803

Piping 804

Pumps 804

Reactors 804

Refrigeration 805

Size Separation of Particles 805

Utilities:Common Specifications 806

Vessels(Drums) 806

Vessels(Pressure) 806

Vessels(Storage Tanks) 807

Ⅺ.Materials of Construction 808

Ⅻ.Generation of Linear Models in Standard Forms 810

Author Index 815

Subject Index 817