1 概述 1
第一部分 基本原理 9
2 统计力学 9
2.1 熵及温度 9
2.2 经典统计力学 13
2.2.1 各态历经性 15
3 Monte Carlo模拟 18
3.1 Monte Carlo方法 18
3.1.1 重要性抽样 19
3.1.2 Metropolis方法 21
3.2 基本Monte Carlo算法 25
3.2.1 算法 26
3.2.2 技术细节 27
3.3 尝试移动 36
3.3.1 平动 36
3.3.2 方位移动 40
3.4 应用 44
4.1 概念 51
4 分子动力学模拟 51
4.2 程序 52
4.2.1 初始化 54
4.2.2 力的计算 55
4.2.3 运动方程积分 57
4.3 运动方程 59
4.3.1 其他算法 62
4.3.2 高阶算法 65
4.3.3 时间可逆算法的刘维公式 65
4.3.4 李雅普诺夫非稳定性 69
4.4 混合Monte Carlo 71
4.5 计算机实验 72
4.5.1 扩散 75
4.5.2 测定相关性的n-阶算法 80
4.6 一些应用 86
第二部分 系综 95
5 不同系综中的Monte Carlo模拟 95
5.2.1 Monte Carlo模拟 96
5.1 一般方法 96
5.2 正则系综 96
5.2.2 算法的证明 97
5.3 微正则Monte Carlo 98
5.4 等温等压系综 99
5.4.1 统计力学基础 99
5.4.2 Monte Carlo模拟 102
5.4.3 应用 106
5.5 等张力等温系综 108
5.6 巨正则系综 109
5.6.1 统计力学原理 110
5.6.2 Monte Carlo模拟 112
5.6.3 算法的证明 114
5.6.4 应用 116
6 不同系综中的分子动力学 119
6.1 恒温下的分子动力学 120
6.1.1 Andersen热浴 121
6.1.2 Nose-Hoover热浴 127
6.1.3 Nose-Hoover链 134
6.2 在线优化:Car-Parrinello方法 138
第三部分 相平衡 143
7 自由能计算 143
7.1 热力学积分 144
7.2 化学势 148
7.2.1 粒子插入法 149
7.2.2 其他系综 152
7.2.3 重叠分布法 154
7.3 其他自由能方法 158
7.3.1 多直方图 159
7.3.2 接受率法 165
7.4 伞形抽样 167
8 无界面的共存相 173
8.1 Gibbs系综法 174
8.1.1 配分函数 175
8.1.2 Monte Carlo模拟 176
8.1.3 方法的实施 179
8.1.4 结果分析 185
8.2 应用 191
8.3 半巨正则系综 194
9 含固体的相平衡 202
9.1 热力学积分 202
9.2 固体的自由能 204
9.2.1 具有不连续势能的原子固体 204
9.2.2 具有连续势能的原子固体 214
9.3 分子固体的自由能 216
9.4 描绘共存曲线 219
第四部分 高等方法 225
10 约束 225
10.1 约束 226
10.2 约束及非约束平均 231
11 稀有事件 237
11.1 理论背景 238
11.2 逾越势垒模拟 243
12.1 簇 249
12.簇移动 249
12.2 早期拒受方法 255
13 复杂流体 258
13.1 偏倚抽样方法 259
13.1.1 Metropolis之外的方法 259
13.1.2 取向偏倚 260
13.2 链状分子 267
13.2.1 构型偏倚Monte Carlo 267
13.2.2 格子模型 268
13.2.3 非格子模型 272
13.3 尝试取向的产生 278
13.3.1 强分子内部相互作用 278
13.4 固定末端 286
13.4.1 格子模型 286
13.4.2 充分柔性链 288
13.5 巨正则系综 290
13.5.1 算法 291
13.6 Gibbs系综模拟 295
13.6.1 算法 295
13.7 聚合物之外的模拟 298
14 链状分子的自由能 300
14.1 作为可逆功的化学势 300
14.2 Rosenbluth抽样 301
14.2.1 具有离散构象的大分子 301
14.2.2 扩展至连续可变形分子 306
14.2.3 重叠分布Rosenbluth方法 313
14.2.4 递归抽样 314
A1 静态响应 319
附录A 线性响应理论 319
第五部分 附录 319
A2 动态响应 320
A3 耗散 323
附录B 长程作用 329
B1 Ewald加和 329
B2 其他替代算法 338
附录C 节省CPU时间 344
C1 Verlet列表 344
C2 元胞列表 348
C3 Verlet和元胞联合列表 351
C4 效率 354
附录D 统计误差 358
D1 统计性质:体系尺度 358
D2 相关函数 360
D3 块平均 362
附录E 积分方法 365
E1 高阶方法 365
E2 Nose-Hoover算法 366
E3 Nose-Hoover链 372
附录F 参考态 375
巨正则系综模拟 375
附录G Glbbs系综中的统计力学 378
G1 Gibbs系综自由能 378
G2 Gibbs系综的化学势 384
附录H 一些通用算法 387
附录I 聚合物的重叠分布 391
参考文献 395