《FUNDAMENTALS OF HEAT AND MASS TRANSFER SIXTH EDITION》PDF下载

  • 购买积分:24 如何计算积分?
  • 作  者:FRANK P.INCROPERA,DAVID P.DEWITT,THEODORE L.BERGMAN等
  • 出 版 社:
  • 出版年份:2222
  • ISBN:0471794716
  • 页数:925 页
图书介绍:

CHAPTER 1Essential Concepts 1

1.1 What and How? 2

1.2 Physical Origins and Rate Equations 3

1.2.1 Conduction 3

1.2.2 Convection 6

1.2.3 Radiation 9

1.2.4 Relationship to Thermodynamics 12

1.3 The Conservation of Energy Requirement 13

1.3.1 Conservation of Energy for a Control Volume 13

1.3.2 The Surface Energy Balance 25

1.3.3 Application of the Conservation Laws:Methodology 28

1.4 Analysis of Heat Transfer Problems: Methodology 29

1.5 Relevance of Heat Transfer 32

1.6 Units and Dimensions 35

1.7 Summary 38

References 41

Problems 41

CHAPTER 2Fundamental Concepts of Conduction 57

2.1 The Conduction Rate Equation 58

2.2 The Thermal Properties of Matter 60

2.2.1 Thermal Conductivity 60

2.2.2 Other Relevant Properties 67

2.3 The Heat Diffusion Equation 70

2.4 Boundary and Initial Conditions 77

2.5 Summary 81

References 82

Problems 82

CHAPTER 3Steady-State, One-Dimensional Conduction 95

3.1 The Plane Wall 96

3.1.1 Temperature Distribution 96

3.1.2 Thermal Resistance 98

3.1.3 The Composite Wall 99

3.1.4 Contact Resistance 101

3.2 An Alternative Conduction Analysis 112

3.3 Radial Systems 116

3.3.1 The Cylinder 116

3.3.2 The Sphere 122

3.4 Summary of One-Dimensional Conduction Results 125

3.5 Conduction with Thermal Energy Generation 126

3.5.1 The Plane Wall 127

3.5.2 Radial Systems 132

3.5.3 Application of Resistance Concepts 137

3.6 Heat Transfer from Extended Surfaces 137

3.6.1 A General Conduction Analysis 139

3.6.2 Fins of Uniform Cross-Sectional Area 141

3.6.3 Fin Performance 147

3.6.4 Fins of Nonuniform Cross-Sectional Area 150

3.6.5 Overall Surface Efficiency 153

3.7 The Bioheat Equation 162

3.8 Summary 166

References 168

Problems 169

CHAPTER 4Steady-State, Multi-Dimensional Conduction 201

4.1 Alternative Approaches 202

4.2 The Method of Separation of Variables 203

4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 207

4.4 Finite-Difference Equations 212

4.4.1 The Nodal Network 213

4.4.2 Finite-Difference Form of the Heat Equation 214

4.4.3 The Energy Balance Method 215

4.5 Solving the Finite-Difference Equations 222

4.5.1 The Matrix Inversion Method 222

4.5.2 Gauss-SeidelIteration 223

4.5.3 Some Precautions 229

4.6 Summary 234

References 235

Problems 235

CHAPTER 5Time-Dependent Conduction 255

5.1 The Lumped Capacitance Method 256

5.2 Validity of the Lumped Capacitance Method 259

5.3 General Lumped Capacitance Analysis 263

5.4 Spatial Effects 270

5.5 The Plane Wall with Convection 272

5.5.1 Exact Solution 272

5.5.2 Approximate Solution 273

5.5.3 Total Energy Transfer 274

5.5.4 Additional Considerations 275

5.6 Radial Systems with Convection 276

5.6.1 Exact Solutions 276

5.6.2 Approximate Solutions 277

5.6.3 Total Energy Transfer 277

5.6.4 Additional Considerations 278

5.7 The Semi-Infinite Solid 283

5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 290

5.8.1 Constant Temperature Boundary Conditions 290

5.8.2 Constant Heat Flux Boundary Conditions 292

5.8.3 Approximate Solutions 293

5.9 Periodic Heating 299

5.10 Finite-Difference Methods 302

5.10.1 Discretization of the Heat Equation: The Explicit Method 302

5.10.2 Discretization of the Heat Equation: The Implicit Method 310

5.11 Summary 317

References 319

Problems 319

CHAPTER 6Fundamental Concepts of Convection 347

6.1 The Convection Boundary Layers 348

6.1.1 The Velocity Boundary Layer 348

6.1.2 The Thermal Boundary Layer 349

6.1.3 The Concentration Boundary Layer 350

6.1.4 Significance of the Boundary Layers 352

6.2 Local and Average Convection Coefficients 352

6.2.1 Heat Transfer 352

6.2.2 Mass Transfer 353

6.2.3 The Problem of Convection 355

6.3 Laminar and Turbulent Flow 359

6.3.1 Laminar and Turbulent Velocity Boundary Layers 359

6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 361

6.4 The Boundary Layer Equations 364

6.4.1 Boundary Layer Equations for Laminar Flow 365

6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 367

6.5.1 Boundary Layer Similarity Parameters 368

6.5.2 Functional Form of the Solutions 368

6.6 Physical Significance of the Dimensionless Parameters 374

6.7 Boundary Layer Analogies 377

6.7.1 The Heat and Mass Transfer Analogy 377

6.7.2 Evaporative Cooling 381

6.7.3 The Reynolds Analogy 384

6.8 The Convection Coefficients 385

6.9 Summary 385

References 386

Problems 387

CHAPTER 7External Forced Convection 401

7.1 The Empirical Method 403

7.2 The Flat Plate in Parallel Flow 405

7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 405

7.2.2 Turbulent Flow over an Isothermal Plate 410

7.2.3 Mixed Boundary Layer Conditions 411

7.2.4 Unheated Starting Length 412

7.2.5 Flat Plates with Constant Heat Flux Conditions 413

7.2.6 Limitations on Use of Convection Coefficients 414

7.3 Methodology for a Convection Calculation 414

7.4 The Cylinder in Cross Flow 423

7.4.1 Flow Considerations 423

7.4.2 Convection Heat and Mass Transfer 425

7.5 The Sphere 433

7.6 Flow Across Banks of Tubes 436

7.7 Impinging Jets 447

7.7.1 Hydrodynamic and Geometric Considerations 447

7.7.2 Convection Heat and Mass Transfer 449

7.8 Packed Beds 452

7.9 Summary 454

References 456

Problems 457

CHAPTER 8Internal Forced Convection 485

8.1 Hydrodynamic Considerations 486

8.1.1 Flow Conditions 486

8.1.2 The Mean Velocity 487

8.1.3 Velocity Profile in the Fully Developed Region 488

8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 490

8.2 Thermal Considerations 491

8.2.1 The Mean Temperature 492

8.2.2 Newton’s Law of Cooling 493

8.2.3 Fully Developed Conditions 493

8.3 The Energy Balance 497

8.3.1 General Considerations 497

8.3.2 Constant Surface Heat Flux 498

8.3.3 Constant Surface Temperature 501

8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 505

8.4.1 The Fully Developed Region 505

8.4.2 The Entry Region 512

8.5 Convection Correlations: Turbulent Flow in Circular Tubes 514

8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 518

8.7 Heat Transfer Enhancement 521

8.8 Microscale Internal Flow 524

8.8.1 Flow Conditions in Microscale Internal Flow 524

8.8.2 Thermal Considerations in Microscale Internal Flow 525

8.9 Convection Mass Transfer 528

8.10 Summary 531

References 533

Problems 534

CHAPTER 9Natural Convection 559

9.1 Physical Considerations 560

9.2 The Governing Equations 563

9.3 Similarity Considerations 564

9.4 Laminar Free Convection on a Vertical Surface 566

9.5 The Effects of Turbulence 568

9.6 Empirical Correlations: External Free Convection Flows 571

9.6.1 The Vertical Plate 571

9.6.2 Inclined and Horizontal Plates 574

9.6.3 The Long Horizontal Cylinder 579

9.6.4 Spheres 583

9.7 Free Convection within Parallel Plate Channels 584

9.7.1 Vertical Channels 585

9.7.2 Inclined Channels 587

9.8 Empirical Correlations: Enclosures 587

9.8.1 Rectangular Cavities 587

9.8.2 Concentric Cylinders 590

9.8.3 Concentric Spheres 591

9.9 Combined Free and Forced Convection 593

9.10 Convection Mass Transfer 594

9.11 Summary 595

References 596

Problems 597

CHAPTER 10Convection Processes of Boiling and Condensation 619

10.1 Dimensionless Parameters in Boiling and Condensation 620

10.2 Boiling Modes 621

10.3 Pool Boiling 622

10.3.1 The Boiling Curve 622

10.3.2 Modes of Pool Boiling 624

10.4 Pool Boiling Correlations 627

10.4.1 Nucleate Pool Boiling 627

10.4.2 Critical Heat Flux for Nucleate Pool Boiling 629

10.4.3 Minimum Heat Flux 629

10.4.4 Film Pool Boiling 630

10.4.5 Parametric Effects on Pool Boiling 631

10.5 Forced Convection Boiling 636

10.5.1 External Forced Convection Boiling 637

10.5.2 Two-Phase Flow 637

10.5.3 Two-Phase Flow in Microchannels 640

10.6 Condensation: Physical Mechanisms 641

10.7 Laminar Film Condensation on a Vertical Plate 643

10.8 Turbulent Film Condensation 646

10.9 Film Condensation on Radial Systems 651

10.10 Film Condensation in Horizontal Tubes 654

10.11 Dropwise Condensation 655

10.12 Summary 655

References 656

Problems 657

CHAPTER 11Heat Exchange Devices 669

11.1 Heat Exchanger Types 670

11.2 The Overall Heat Transfer Coefficient 673

11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 675

11.3.1 The Parallel-Flow Heat Exchanger 676

11.3.2 The Counterflow Heat Exchanger 679

11.3.3 Special Operating Conditions 679

11.4 Heat Exchanger Analysis: The Effectiveness-NTU Method 686

11.4.1 Definitions 686

11.4.2 Effectiveness-NTU Relations 688

11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness-NTU Method 694

11.6 Compact Heat Exchangers 700

11.7 Summary 705

References 706

Problems 707

CHAPTER 12Fundamental Concepts of Radiation 723

12.1 Fundamental Concepts 724

12.2 Radiation Intensity 727

12.2.1 Mathematical Definitions 727

12.2.2 Radiation Intensity and Its Relation to Emission 728

12.2.3 Relation to Irradiation 733

12.2.4 Relation to Radiosity 735

12.3 Blackbody Radiation 736

12.3.1 The Planck Distribution 737

12.3.2 Wien’s Displacement Law 737

12.3.3 The Stefan-Boltzmann Law 738

12.3.4 Band Emission 739

12.4 Emission from Real Surfaces 744

12.5 Absorption, Reflection, and Transmission by Real Surfaces 752

12.5.1 Absorptivity 754

12.5.2 Reflectivity 755

12.5.3 Transmissivity 756

12.5.4 Special Considerations 757

12.6 Kirchhoff’s Law 762

12.7 The Gray Surface 764

12.8 Environmental Radiation 770

12.9 Summary 776

References 780

Problems 780

CHAPTER 13Radiative Transfer Between Two or More Surfaces 811

13.1 The View Factor 812

13.1.1 The View Factor Integral 812

13.1.2 View Factor Relations 813

13.2 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 822

13.2.1 Net Radiation Exchange at a Surface 823

13.2.2 Radiation Exchange Between Surfaces 824

13.2.3 Blackbody Radiation Exchange 830

13.2.4 The Two-Surface Enclosure 831

13.2.5 Radiation Shields 832

13.2.6 The Reradiating Surface 835

13.3 Multimode Heat Transfer 839

13.4 Radiation Exchange with Participating Media 842

13.4.1 Volumetric Absorption 843

13.4.2 Gaseous Emission and Absorption 843

13.5 Summary 847

References 849

Problems 849

CHAPTER 14Mass Transfer by Diffusion 879

14.1 Physical Origins and Rate Equations 880

14.1.1 Physical Origins 880

14.1.2 Mixture Composition 881

14.1.3 Fick’s Law of Diffusion 882

14.1.4 Mass Diffusivity 883

14.2 Mass Transfer in Nonstationary Media 885

14.2.1 Absolute and Diffusive Species Fluxes 885

14.2.2 Evaporation in a Column 888

14.3 The Stationary Medium Approximation 893

14.4 Conservation of Species for a Stationary Medium 894

14.4.1 Conservation of Species for a Control Volume 894

14.4.2 The Mass Diffusion Equation 894

14.4.3 Stationary Media with Specified Surface Concentrations 897

14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 900

14.5.1 Evaporation and Sublimation 901

14.5.2 Solubility of Gases in Liquids and Solids 902

14.5.3 Catalytic Surface Reactions 905

14.6 Mass Diffusion with Homogeneous Chemical Reactions 908

14.7 Transient Diffusion 911

14.8 Summary 916

References 917

Problems 917