CHAPTER 1Essential Concepts 1
1.1 What and How? 2
1.2 Physical Origins and Rate Equations 3
1.2.1 Conduction 3
1.2.2 Convection 6
1.2.3 Radiation 9
1.2.4 Relationship to Thermodynamics 12
1.3 The Conservation of Energy Requirement 13
1.3.1 Conservation of Energy for a Control Volume 13
1.3.2 The Surface Energy Balance 25
1.3.3 Application of the Conservation Laws:Methodology 28
1.4 Analysis of Heat Transfer Problems: Methodology 29
1.5 Relevance of Heat Transfer 32
1.6 Units and Dimensions 35
1.7 Summary 38
References 41
Problems 41
CHAPTER 2Fundamental Concepts of Conduction 57
2.1 The Conduction Rate Equation 58
2.2 The Thermal Properties of Matter 60
2.2.1 Thermal Conductivity 60
2.2.2 Other Relevant Properties 67
2.3 The Heat Diffusion Equation 70
2.4 Boundary and Initial Conditions 77
2.5 Summary 81
References 82
Problems 82
CHAPTER 3Steady-State, One-Dimensional Conduction 95
3.1 The Plane Wall 96
3.1.1 Temperature Distribution 96
3.1.2 Thermal Resistance 98
3.1.3 The Composite Wall 99
3.1.4 Contact Resistance 101
3.2 An Alternative Conduction Analysis 112
3.3 Radial Systems 116
3.3.1 The Cylinder 116
3.3.2 The Sphere 122
3.4 Summary of One-Dimensional Conduction Results 125
3.5 Conduction with Thermal Energy Generation 126
3.5.1 The Plane Wall 127
3.5.2 Radial Systems 132
3.5.3 Application of Resistance Concepts 137
3.6 Heat Transfer from Extended Surfaces 137
3.6.1 A General Conduction Analysis 139
3.6.2 Fins of Uniform Cross-Sectional Area 141
3.6.3 Fin Performance 147
3.6.4 Fins of Nonuniform Cross-Sectional Area 150
3.6.5 Overall Surface Efficiency 153
3.7 The Bioheat Equation 162
3.8 Summary 166
References 168
Problems 169
CHAPTER 4Steady-State, Multi-Dimensional Conduction 201
4.1 Alternative Approaches 202
4.2 The Method of Separation of Variables 203
4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate 207
4.4 Finite-Difference Equations 212
4.4.1 The Nodal Network 213
4.4.2 Finite-Difference Form of the Heat Equation 214
4.4.3 The Energy Balance Method 215
4.5 Solving the Finite-Difference Equations 222
4.5.1 The Matrix Inversion Method 222
4.5.2 Gauss-SeidelIteration 223
4.5.3 Some Precautions 229
4.6 Summary 234
References 235
Problems 235
CHAPTER 5Time-Dependent Conduction 255
5.1 The Lumped Capacitance Method 256
5.2 Validity of the Lumped Capacitance Method 259
5.3 General Lumped Capacitance Analysis 263
5.4 Spatial Effects 270
5.5 The Plane Wall with Convection 272
5.5.1 Exact Solution 272
5.5.2 Approximate Solution 273
5.5.3 Total Energy Transfer 274
5.5.4 Additional Considerations 275
5.6 Radial Systems with Convection 276
5.6.1 Exact Solutions 276
5.6.2 Approximate Solutions 277
5.6.3 Total Energy Transfer 277
5.6.4 Additional Considerations 278
5.7 The Semi-Infinite Solid 283
5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes 290
5.8.1 Constant Temperature Boundary Conditions 290
5.8.2 Constant Heat Flux Boundary Conditions 292
5.8.3 Approximate Solutions 293
5.9 Periodic Heating 299
5.10 Finite-Difference Methods 302
5.10.1 Discretization of the Heat Equation: The Explicit Method 302
5.10.2 Discretization of the Heat Equation: The Implicit Method 310
5.11 Summary 317
References 319
Problems 319
CHAPTER 6Fundamental Concepts of Convection 347
6.1 The Convection Boundary Layers 348
6.1.1 The Velocity Boundary Layer 348
6.1.2 The Thermal Boundary Layer 349
6.1.3 The Concentration Boundary Layer 350
6.1.4 Significance of the Boundary Layers 352
6.2 Local and Average Convection Coefficients 352
6.2.1 Heat Transfer 352
6.2.2 Mass Transfer 353
6.2.3 The Problem of Convection 355
6.3 Laminar and Turbulent Flow 359
6.3.1 Laminar and Turbulent Velocity Boundary Layers 359
6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers 361
6.4 The Boundary Layer Equations 364
6.4.1 Boundary Layer Equations for Laminar Flow 365
6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations 367
6.5.1 Boundary Layer Similarity Parameters 368
6.5.2 Functional Form of the Solutions 368
6.6 Physical Significance of the Dimensionless Parameters 374
6.7 Boundary Layer Analogies 377
6.7.1 The Heat and Mass Transfer Analogy 377
6.7.2 Evaporative Cooling 381
6.7.3 The Reynolds Analogy 384
6.8 The Convection Coefficients 385
6.9 Summary 385
References 386
Problems 387
CHAPTER 7External Forced Convection 401
7.1 The Empirical Method 403
7.2 The Flat Plate in Parallel Flow 405
7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution 405
7.2.2 Turbulent Flow over an Isothermal Plate 410
7.2.3 Mixed Boundary Layer Conditions 411
7.2.4 Unheated Starting Length 412
7.2.5 Flat Plates with Constant Heat Flux Conditions 413
7.2.6 Limitations on Use of Convection Coefficients 414
7.3 Methodology for a Convection Calculation 414
7.4 The Cylinder in Cross Flow 423
7.4.1 Flow Considerations 423
7.4.2 Convection Heat and Mass Transfer 425
7.5 The Sphere 433
7.6 Flow Across Banks of Tubes 436
7.7 Impinging Jets 447
7.7.1 Hydrodynamic and Geometric Considerations 447
7.7.2 Convection Heat and Mass Transfer 449
7.8 Packed Beds 452
7.9 Summary 454
References 456
Problems 457
CHAPTER 8Internal Forced Convection 485
8.1 Hydrodynamic Considerations 486
8.1.1 Flow Conditions 486
8.1.2 The Mean Velocity 487
8.1.3 Velocity Profile in the Fully Developed Region 488
8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow 490
8.2 Thermal Considerations 491
8.2.1 The Mean Temperature 492
8.2.2 Newton’s Law of Cooling 493
8.2.3 Fully Developed Conditions 493
8.3 The Energy Balance 497
8.3.1 General Considerations 497
8.3.2 Constant Surface Heat Flux 498
8.3.3 Constant Surface Temperature 501
8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations 505
8.4.1 The Fully Developed Region 505
8.4.2 The Entry Region 512
8.5 Convection Correlations: Turbulent Flow in Circular Tubes 514
8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus 518
8.7 Heat Transfer Enhancement 521
8.8 Microscale Internal Flow 524
8.8.1 Flow Conditions in Microscale Internal Flow 524
8.8.2 Thermal Considerations in Microscale Internal Flow 525
8.9 Convection Mass Transfer 528
8.10 Summary 531
References 533
Problems 534
CHAPTER 9Natural Convection 559
9.1 Physical Considerations 560
9.2 The Governing Equations 563
9.3 Similarity Considerations 564
9.4 Laminar Free Convection on a Vertical Surface 566
9.5 The Effects of Turbulence 568
9.6 Empirical Correlations: External Free Convection Flows 571
9.6.1 The Vertical Plate 571
9.6.2 Inclined and Horizontal Plates 574
9.6.3 The Long Horizontal Cylinder 579
9.6.4 Spheres 583
9.7 Free Convection within Parallel Plate Channels 584
9.7.1 Vertical Channels 585
9.7.2 Inclined Channels 587
9.8 Empirical Correlations: Enclosures 587
9.8.1 Rectangular Cavities 587
9.8.2 Concentric Cylinders 590
9.8.3 Concentric Spheres 591
9.9 Combined Free and Forced Convection 593
9.10 Convection Mass Transfer 594
9.11 Summary 595
References 596
Problems 597
CHAPTER 10Convection Processes of Boiling and Condensation 619
10.1 Dimensionless Parameters in Boiling and Condensation 620
10.2 Boiling Modes 621
10.3 Pool Boiling 622
10.3.1 The Boiling Curve 622
10.3.2 Modes of Pool Boiling 624
10.4 Pool Boiling Correlations 627
10.4.1 Nucleate Pool Boiling 627
10.4.2 Critical Heat Flux for Nucleate Pool Boiling 629
10.4.3 Minimum Heat Flux 629
10.4.4 Film Pool Boiling 630
10.4.5 Parametric Effects on Pool Boiling 631
10.5 Forced Convection Boiling 636
10.5.1 External Forced Convection Boiling 637
10.5.2 Two-Phase Flow 637
10.5.3 Two-Phase Flow in Microchannels 640
10.6 Condensation: Physical Mechanisms 641
10.7 Laminar Film Condensation on a Vertical Plate 643
10.8 Turbulent Film Condensation 646
10.9 Film Condensation on Radial Systems 651
10.10 Film Condensation in Horizontal Tubes 654
10.11 Dropwise Condensation 655
10.12 Summary 655
References 656
Problems 657
CHAPTER 11Heat Exchange Devices 669
11.1 Heat Exchanger Types 670
11.2 The Overall Heat Transfer Coefficient 673
11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference 675
11.3.1 The Parallel-Flow Heat Exchanger 676
11.3.2 The Counterflow Heat Exchanger 679
11.3.3 Special Operating Conditions 679
11.4 Heat Exchanger Analysis: The Effectiveness-NTU Method 686
11.4.1 Definitions 686
11.4.2 Effectiveness-NTU Relations 688
11.5 Heat Exchanger Design and Performance Calculations: Using the Effectiveness-NTU Method 694
11.6 Compact Heat Exchangers 700
11.7 Summary 705
References 706
Problems 707
CHAPTER 12Fundamental Concepts of Radiation 723
12.1 Fundamental Concepts 724
12.2 Radiation Intensity 727
12.2.1 Mathematical Definitions 727
12.2.2 Radiation Intensity and Its Relation to Emission 728
12.2.3 Relation to Irradiation 733
12.2.4 Relation to Radiosity 735
12.3 Blackbody Radiation 736
12.3.1 The Planck Distribution 737
12.3.2 Wien’s Displacement Law 737
12.3.3 The Stefan-Boltzmann Law 738
12.3.4 Band Emission 739
12.4 Emission from Real Surfaces 744
12.5 Absorption, Reflection, and Transmission by Real Surfaces 752
12.5.1 Absorptivity 754
12.5.2 Reflectivity 755
12.5.3 Transmissivity 756
12.5.4 Special Considerations 757
12.6 Kirchhoff’s Law 762
12.7 The Gray Surface 764
12.8 Environmental Radiation 770
12.9 Summary 776
References 780
Problems 780
CHAPTER 13Radiative Transfer Between Two or More Surfaces 811
13.1 The View Factor 812
13.1.1 The View Factor Integral 812
13.1.2 View Factor Relations 813
13.2 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure 822
13.2.1 Net Radiation Exchange at a Surface 823
13.2.2 Radiation Exchange Between Surfaces 824
13.2.3 Blackbody Radiation Exchange 830
13.2.4 The Two-Surface Enclosure 831
13.2.5 Radiation Shields 832
13.2.6 The Reradiating Surface 835
13.3 Multimode Heat Transfer 839
13.4 Radiation Exchange with Participating Media 842
13.4.1 Volumetric Absorption 843
13.4.2 Gaseous Emission and Absorption 843
13.5 Summary 847
References 849
Problems 849
CHAPTER 14Mass Transfer by Diffusion 879
14.1 Physical Origins and Rate Equations 880
14.1.1 Physical Origins 880
14.1.2 Mixture Composition 881
14.1.3 Fick’s Law of Diffusion 882
14.1.4 Mass Diffusivity 883
14.2 Mass Transfer in Nonstationary Media 885
14.2.1 Absolute and Diffusive Species Fluxes 885
14.2.2 Evaporation in a Column 888
14.3 The Stationary Medium Approximation 893
14.4 Conservation of Species for a Stationary Medium 894
14.4.1 Conservation of Species for a Control Volume 894
14.4.2 The Mass Diffusion Equation 894
14.4.3 Stationary Media with Specified Surface Concentrations 897
14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces 900
14.5.1 Evaporation and Sublimation 901
14.5.2 Solubility of Gases in Liquids and Solids 902
14.5.3 Catalytic Surface Reactions 905
14.6 Mass Diffusion with Homogeneous Chemical Reactions 908
14.7 Transient Diffusion 911
14.8 Summary 916
References 917
Problems 917