第1章 极限与连续 1
1.1函数 1
1.1.1常量与变量 1
1.1.2函数的概念 3
1.1.3函数的几种特性 5
1.1.4初等函数 6
1.1.5经济学中常用的函数 10
1.2函数的极限 13
1.2.1函数极限的概念 13
1.2.2数列的极限 16
1.2.3极限的性质 17
1.3无穷小量和无穷大量极限运算法则 18
1.3.1无穷小与无穷大 18
1.3.2无穷小的比较 20
1.3.3极限运算法则 21
1.4极限存在准则 两个重要极限 24
1.4.1极限存在准则 24
1.4.2两个重要极限 25
1.5函数的连续性与性质 30
1.5.1函数的连续性 30
1.5.2函数的间断点 31
1.5.3连续函数的性质和初等函数的连续性 32
1.5.4闭区间上连续函数的性质 34
本章小结 37
数学实验一:用Mathematica求函数极限 41
第2章 导数与微分 45
2.1导数的概念 45
2.1.1引例 45
2.1.2导数的定义 47
2.1.3函数的可导性与连续性的关系 49
2.2基本初等函数的导数公式 50
2.3函数和、差、积、商的求导法则 53
2.3.1函数的和差的求导法则 53
2.3.2函数乘积的求导法则 53
2.3.3函数商的求导法则 54
2.4反函数及复合函数求导法 初等函数求导 56
2.4.1反函数的导数 56
2.4.2复合函数的求导法则 57
2.4.3初等函数求导 58
2.5高阶导数 60
2.6隐函数的导数及由参数方程所确定的函数的导数 61
2.6.1隐函数的导数 61
2.6.2由参数方程所确定的函数的求导 63
2.7微分的概念及应用 65
2.7.1微分的概念 65
2.7.2微分的几何意义 66
2.7.3基本初等函数的微分公式与微分运算法则 67
2.7.4微分在近似计算上的应用 68
本章小结 70
数学实验二:用Mathematica求函数的导数和微分 74
第3章 中值定理与导数的应用 76
3.1中值定理 76
3.1.1罗尔定理 77
3.1.2拉格朗日中值定理 77
3.1.3柯西中值定理 79
3.2洛必达法则 80
3.3函数的单调性与极值的判定 84
3.3.1函数的单调性 84
3.3.2函数的极值 86
3.4函数的最值及其应用 88
3.5曲线的凹凸性与函数图形的描绘 92
3.5.1曲线的凹凸性与拐点 92
3.5.2函数图形的描绘 93
3.6曲线的曲率 96
3.6.1弧微分 96
3.6.2曲线的曲率 97
本章小结 100
数学实验三:用Mathematica求函数极值与二维作图 103
第4章 积分及其应用 107
4.1不定积分的概念、性质及基本积分公式 107
4.1.1不定积分的概念 107
4.1.2基本积分公式 109
4.1.3不定积分的性质 110
4.2定积分的概念与性质 112
4.1.1定积分的问题举例 112
4.1.2定积分的定义 114
4.1.3定积分的几何意义 115
4.1.4定积分的性质 115
4.3微积分基本公式 117
4.3.1积分上限函数 117
4.3.2牛顿—莱布尼茨(Newton-Leibniz)公式 118
4.4换元积分法 120
4.4.1不定积分的换元积分法 121
4.4.2定积分的换元积分法 127
4.5分部积分法 130
4.6定积分的应用 134
4.6.1定积分的微元法 134
4.6.2平面图形的面积 135
4.6.3平行截面为已知的立体的体积 137
4.6.4其他应用举例 139
4.7广义积分 141
4.7.1无穷区间上的广义积分 141
4.7.2无界函数的广义积分 142
本章小结 144
数学实验四用Mathematica求积分 149
第5章 多元函数的微积分 151
5.1空间解析几何简介 151
5.1.1空间直角坐标系 151
5.1.2向量的坐标表示及两点间的距离 152
5.1.3曲面与方程 153
5.1.4空间曲线及其在坐标面上的投影 156
5.2二元函数的极限与连续 158
5.2.1二元函数的定义 158
5.2.2二元函数的极限与连续性 160
5.3偏导数 162
5.3.1偏导数的定义 162
5.3.2高阶偏导数 163
5.3.3多元复合函数的求导 164
5.3.4隐函数的求导公式 166
5.4全微分 168
5.4.1全微分的定义 168
5.4.2全微分在近似计算中的应用 170
5.5多元函数的极值及其应用 171
5.5.1二元函数的极值 171
5.5.2二元函数的最大值和最小值 172
5.5.3条件极值 174
5.6二重积分 176
5.6.1二重积分的概念和性质 176
5.6.2二重积分的计算 178
本章小结 185
数学实验五 用Mathematica求二元函数微积分及三维作图 188
附录Ⅰ 初等数学常用公式 192
附录Ⅱ 常用平面曲线及其方程 196
附录Ⅲ MATHEMATICA简介 198
习题参考答案 206
参考文献 221