《概率论与数理统计》PDF下载

  • 购买积分:11 如何计算积分?
  • 作  者:王勇主编(哈尔滨工业大学数学系)
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2007
  • ISBN:7040217988
  • 页数:274 页
图书介绍:

第0章 引言 1

0.1 概率论与数理统计发展简史 1

0.2 概率论与数理统计研究问题的方法 3

第1章 随机事件与概率 4

1.1 随机事件 4

1.1.1 必然现象与随机现象 4

1.1.2 随机试验与事件、样本空间 5

1.2 事件的关系与运算 7

1.3 古典概率 11

1.3.1 古典概率的定义与计算 11

1.3.2 概率的性质 14

1.4 几何概率 17

1.5 统计概率 18

1.6 概率的公理化定义 20

习题1 22

第2章 条件概率与独立性 25

2.1 条件概率、乘法定理 25

2.2 全概率公式 28

2.3 贝叶斯公式 29

2.4 事件的独立性 31

2.4.1 两个事件的独立性 31

2.4.2 多个事件的独立性 33

2.5 重复独立试验、二项概率公式 37

习题2 42

第3章 随机变量及其分布 45

3.1 随机变量的概念 45

3.2 离散型随机变量 46

3.2.1 概率分布列 46

3.2.2 0—1分布(伯努利分布、两点分布) 47

3.2.3 二项分布 47

3.2.4 泊松分布 49

3.2.5 几何分布 50

3.2.6 超几何分布 51

3.3 随机变量的分布函数 52

3.4 连续型随机变量 54

3.4.1 连续型随机变量、概率密度 54

3.4.2 均匀分布 57

3.4.3 指数分布 58

3.5 正态分布 60

3.6 随机变量函数的分布 64

习题3 68

第4章 多维随机变量及其分布 72

4.1 多维随机变量及其分布函数、边缘分布函数 72

4.2 二维离散型随机变量 75

4.3 二维连续型随机变量 77

4.3.1 概率密度及边缘概率密度 77

4.3.2 二维均匀分布 79

4.3.3 二维正态分布 80

4.4 随机变量的独立性 81

4.5 二维随机变量函数的分布 85

4.5.1 和的分布 85

4.5.2 瑞利分布 91

4.5.3 max(X,Y)及min(X,Y)的分布 92

4.6 条件分布 93

习题4 97

第5章 随机变量的数字特征与极限定理 102

5.1 数学期望 102

5.1.1 离散型随机变量的数学期望 102

5.1.2 连续型随机变量的数学期望 104

5.1.3 随机变量函数的数学期望 106

5.1.4 数学期望的性质 108

5.2 方差 112

5.2.1 方差的概念 112

5.2.2 方差的性质 114

5.3 协方差和相关系数、矩 116

5.4 大数定律 122

5.4.1 切比雪夫不等式 122

5.4.2 大数定律 123

5.5 中心极限定理 126

习题5 129

第6章 数理统计的基本概念 135

6.1 总体与样本 135

6.1.1 数理统计的基本问题 135

6.1.2 总体 136

6.1.3 样本 137

6.2 直方图与经验分布函数 139

6.3 x2分布,t分布和F分布 142

6.3.1 x2分布 142

6.3.2 t分布 144

6.3.3 F分布 145

6.4 统计量及抽样分布 147

习题6 151

第7章 参数估计 153

7.1 点估计 153

7.1.1 矩估计法 153

7.1.2 最大似然估计法 155

7.1.3 鉴定估计量的标准 159

7.2 区间估计 161

7.2.1 单个正态总体参数的区间估计 163

7.2.2 两个正态总体参数的区间估计 166

7.2.3 大样本区间估计 167

习题7 169

第8章 假设检验 174

8.1 假设检验的基本概念 174

8.1.1 问题的提出 174

8.1.2 假设检验的基本思想 175

8.1.3 假设检验中的两类错误 176

8.2 单个正态总体参数的显著性检验 177

8.2.1 u检验 177

8.2.2 t检验 180

8.2.3 x2检验 181

8.3 两个正态总体参数的显著性检验 183

8.3.1 t检验(续) 183

8.3.2 F检验 185

8.4 非参数假设检验 187

习题8 192

第9章 单因素试验的方差分析及一元正态线性回归 194

9.1 单因素试验的方差分析 194

9.2 一元正态线性回归 202

9.2.1 一元正态线性回归的数学模型 202

9.2.2 未知参数的估计 204

9.2.3 ?和?的数学期望与方差以及σ2的无偏估计 206

9.2.4 回归方程的显著性检验 209

9.2.5 利用回归方程进行预测和控制 213

9.2.6 一元非线性回归 217

习题9 219

补充习题 223

习题参考答案 238

补充习题参考答案 252

附表 254

附表1 泊松分布累计概率值表 254

附表2 标准正态分布函数值表 255

附表3 x2分布表 257

附表4 t分布表 260

附表5 F分布表 261

附表6 相关系数检验表 273

参考书目 274