《统计物理学 第1分册 理论物理学教程 第5卷》PDF下载

  • 购买积分:16 如何计算积分?
  • 作  者:L.D.Landau E.M.Lifshitz
  • 出 版 社:世界图书出版西安公司
  • 出版年份:1999
  • ISBN:7506242591
  • 页数:544 页
图书介绍:

Ⅰ. THE FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS 1

1. Statistical distributions 1

2. Statistical independence 6

3. Liouville's theorem 9

4. The significance of energy 11

5. The statistical matrix 14

6. Statistical distributions in quantum statistics 21

7. Entropy 23

8. The law of increase of entropy 29

Ⅱ. THERMODYNAMIC QUANTITIES 34

9. Temperature 34

10. Macroscopic motion 36

11. Adiabatic processes 38

12. Pressure 41

13. Work and quantity of heat 44

14. The heat function 47

15. The free energy and the thermodynamic potential 48

16. Relations between the derivatives of thermodynamic quantities 51

17. The thermodynamic scale of temperature 55

18. The Joule-Thomson process 56

19. Maximum work 57

20. Maximum work done by a body in an external medium 59

21. Thermodynamic inequalities 63

22. Le Chatelier's principle 65

23. Nernst's theorem 68

24. The dependence of the thermodynamic quantities on the number of particles 70

25. Equilibrium of a body in an external field 73

26. Rotating bodies 74

27. Thermodynamic relations in the relativistic region 76

Ⅲ. THE GIBBS DISTRIBUTION 79

28. The Gibbs distribution 79

29. The Maxwelliari distribution 82

30. The probability distribution for an oscillator 87

31. The free energy in the Gibbs distribution 91

32. Thermodynamic perturbation theory 95

33. Expansion in powers of h 98

34. The Gibbs distribution for rotating bodies 104

35. The Gibbs distribution for a variable number of particles 106

36. The derivation of the thermodynamic relations from the Gibbs distribution 109

Ⅳ. IDEAL GASES 111

37. The Boltzmann distribution 111

38. The Boltzmann distribution in classical statistics 113

39. Molecular collisions 115

40. Ideal gases not in equilibrium 118

41. The free energy of an ideal Boltzmann gas 120

42. The equation of state of an ideal gas 121

43. Ideal gases with constant specific heat 125

44. The law of equipartition 129

45. Monatomic ideal gases 132

46. Monatomic gases. The effect of the electronic angular momentum 135

47. Diatomic gases with molecules of unlike atoms. Rotation of molecules 137

48. Diatomic gases with molecules of like atoms. Rotation of molecules 141

49. Diatomic gases. Vibrations of atoms 143

50. Diatomic gases. The effect of the electronic angular momentum 146

51. Polyatomic gases 148

52. Magnetism of gases 152

Ⅴ. THE FERMI AND BOSE DISTRIBUTIONS 158

53. The Fermi distribution 158

54. The Bose distribution 159

55. Fermi and Bose gases not in equilibrium 160

56. Fermi and Bose gases of elementary particles 162

57. A degenerate electron gas 166

58. The specific heat of a degenerate electron gas 168

59. Magnetism of an electron gas. Weak fields 171

60. Magnetism of an electron gas. Strong fields 175

61. A relativistic degenerate electron gas 178

62. A degenerate Bose gas 180

63. Black-body radiation 183

Ⅵ. SOLIDS 191

64. Solids at low temperatures 191

65. Solids at high temperatures 195

66. Debye's interpolation formula 198

67. Thermal expansion of solids 201

68. Highly anisotropic crystals 203

69. Crystal lattice vibrations 207

70. Number density of vibrations 211

71. Phonons 215

72. Phonon creation and annihilation operators 218

73. Negative temperatures 221

Ⅶ. NON-IDEAL GASES 225

74. Deviations of gases from the ideal state 225

75. Expansion in powers of the density 230

76. Van der Waals' formula 232

77. Relationship of the virial coefficient and the scattering amplitude 236

78. Thermodynamic quantities for a classical plasma 239

79. The method of correlation functions 243

80. Thermodynamic quantities for a degenerate plasma 245

Ⅷ. PHASE EQUILIBRIUM 251

81. Conditions of phase equilibrium 251

82. The Clapeyron-Clausius formula 255

83. The critical point 257

84. The law of corresponding states 260

Ⅸ. SOLUTIONS 263

85. Systems containing different particles 263

86. The phase rule 264

87. Weak solutions 265

88. Osmotic pressure 267

89. Solvent phases in contact 268

90. Equilibrium with respect to the solute 271

91. Evolution of heat and change of volume on dissolution 274

92. Solutions of strong electrolytes 277

93. Mixtures of ideal gases 279

94. Mixtures of isotopes 281

95. Vapour pressure over concentrated solutions 283

96. Thermodynamic inequalities for solutions 286

97. Equilibrium curves 289

98. Examples of phase diagrams 295

99. Intersection of singular curves on the equilibrium surface 300

100. Gases and liquids 301

Ⅹ. CHEMICAL REACTIONS 305

101. The condition for chemical equilibrium 305

102. The law of mass action 306

103. Heat of reaction 310

104. Ionisation equilibrium 313

105. Equilibrium with respect to pair production 315

ⅩⅠ. PROPERTIES OF MATTER AT VERY HIGH DENSITY 317

106. The equation of state of matter at high density 317

107. Equilibrium of bodies of large mass 320

108. The energy of a gravitating body 327

109. Equilibrium of a neutron sphere 329

ⅩⅡ. FLUCTUATIONS 333

110. The Gaussian distribution 333

111. The Gaussian distribution for more than one variable 335

112. Fluctuations of the fundamental thermodynamic quantities 338

113. Fluctuations in an ideal gas 345

114. Poisson's formula 347

115. Fluctuations in solutions 349

116. Spatial correlation of density fluctuations 350

117. Correlation of density fluctuations in a degenerate gas 354

118. Correlations of fluctuations in time 359

119. Time correlations of the fluctuations of more than one variable 363

120. The symmetry of the kinetic coefficients 365

121. The dissipative function 368

122. Spectral resolution of fluctuations 371

123. The generalised susceptibility 377

124. The fluctuation-dissipation theorem 384

125. The fluctuation-dissipation theorem for more than one variable 389

126. The operator form of the generalised susceptibility 393

127. Fluctuations in the curvature of long molecules 396

ⅩⅢ. THE SYMMETRY OF CRYSTALS 401

128. Symmetry elements of a crystal lattice 401

129. The Bravais lattice 403

130. Crystal systems 405

131. Crystal classes 409

132. Space groups 411

133. The reciprocal lattice 413

134. Irreducible representations of space groups 416

135. Symmetry under time reversal 422

136. Symmetry properties of normal vibrations of a crystal lattice 427

137. Structures periodic in one and two dimensions 432

138. The correlation function in two-dimensional systems 436

139. Symmetry with respect to orientation of molecules 438

140. Nematic and cholesteric liquid crystals 440

141. Fluctuations in liquid crystals 442

ⅩⅣ. PHASE TRANSITIONS OF THE SECOND KIND AND CRITICAL PHENOMENA 446

142. Phase transitions of the second kind 446

143. The discontinuity of specific heat 451

144. Effect of an external field on a phase transition 456

145. Change in symmetry in a phase transition of the second kind 459

146. Fluctuations of the order parameter 471

147. The effective Hamiltonian 478

148. Critical indices 483

149. Scale invariance 489

150. Isolated and critical points of continuous transition 493

151. Phase transitions of the second kind in a two-dimensional lattice 498

152. Van der Waals theory of the critical point 506

153. Fluctuation theory of the critical point 511

ⅩⅤ. SURFACES 517

154. Surface tension 517

155. Surface tension of crystals 520

156. Surface pressure 522

157. Surface tension of solutions 524

158. Surface tension of solutions of strong electrolytes 526

159. Adsorption 527

160. Wetting 529

161. The angle of contact 531

162. Nucleation in phase transitions 533

163. The impossibility of the existence of phases in one-dimensional systems 537

Index 539