1.Introduction 1
1.1.Graphs and Graph Models 1
1.2.Connected Graphs 9
1.3.Common Classes of Graphs 19
1.4.Multigraphs and Digraphs 26
2.Degrees 31
2.1.The Degree of a Vertex 31
2.2.Regular Graphs 38
2.3.Degree Sequences 43
2.4.Excursion:Graphs and Matrices 48
2.5.Exploration:Irregular Graphs 50
3.Isomorphic Graphs 55
3.1.The Definition of Isomorphism 55
3.2.Isomorphism as a Relation 63
3.3.Excursion:Graphs and Groups 66
3.4.Excursion:Reconstruction and Solvability 76
4.Trees 85
4.1.Bridges 85
4.2.Trees 87
4.3.The Minimum Spanning Tree Problem 94
4.4.Excursion:The Number of Spanning Trees 101
5.Connectivity 107
5.1.Cut-Vertices 107
5.2.Blocks 111
5.3.Connectivity 115
5.4.Menger’s Theorem 124
5.5.Exploration:Geodetic Sets 130
6.Traversability 133
6.1.Eulerian Graphs 133
6.2.Hamiltonian Graphs 140
6.3.Exploration:Hamiltonian Walks and Numbers 152
6.4.Excursion:The Early Books of Graph Theory 156
7.Digraphs 161
7.1.Strong Digraphs 161
7.2.Tournaments 169
7.3.Excursion:Decision-Making 176
7.4.Exploration:Wine Bottle Problems 180
8.Matchings and Factorization 183
8.1.Matchings 183
8.2.Factorization 194
8.3.Decompositions and Graceful Labelings 209
8.4.Excursion:Instant Insanity 214
8.5.Excursion:The Petersen Graph 219
8.6.Exploration:γ-Labelings of Graphs 224
9.Planarity 227
9.1.Planar Graphs 227
9.2.Embedding Graphs on Surfaces 241
9.3.Excursion:Graph Minors 249
9.4.Exploration:Embedding Graphs in Graphs 253
10.Coloring 259
10.1.The Four Color Problem 259
10.2.Vertex Coloring 267
10.3.Edge Coloring 280
10.4.Excursion:The Heawood Map Coloring Theorem 288
10.5.Exploration:Local Coloring 293
11.Ramsey Numbers 297
11.1.The Ramsey Number of Graphs 297
11.2.Turan’s Theorem 307
11.3.Exploration:Rainbow Ramsey Numbers 314
11.4.Excursion:Erdos Numbers 321
12.Distance 327
12.1.The Center of a Graph 327
12.2.Distant Vertices 333
12.3.Excursion:Locating Numbers 341
12.4.Excursion:Detour and Directed Distance 346
12.5.Exploration:Channel Assignment 351
12.6.Exploration:Distance Between Graphs 357