1 Introduction 1
1.1 From the Invention of the Gyroscope to Model Based Ship Control 3
1.1.1 The Gyroscope and its Contributions to Ship Control 4
1.1.2 Autopilots 5
1.1.3 Dynamic Positioning and Position Mooring Systems 6
1.1.4 Way-Point Tracking Control Systems 7
1.1.5 The Sea Launch System 7
1.2 Model Representations for Marine Vessels 9
1.2.1 The Classical Model in Naval Architecture 9
1.2.2 The Vectorial Model Representation of Fossen (1991) 10
1.3 The Principle of Guidance, Navigation and Control 11
1.3.1 Definitions of Guidance, Navigation and Control 11
1.3.2 Set-Point Regulation versus Trajectory Tracking Control 12
1.4 Organization of Book 12
Ⅰ Modeling of Marine Vessels 15
2 Kinematics 17
2.1 Reference Frames 19
2.2 Transformations between BODY and NED 21
2.2.1 Euler Angle Transformation 23
2.2.2 Unit Quaternions 29
2.2.3 Quaternions from Euler Angles 33
2.2.4 Euler Angles from Quaternions 35
2.2.5 QUEST Algorithm for Position and Attitude Determination 36
2.3 Transformation between ECEF and NED 38
2.3.1 Longitude and Latitude Transformations 38
2.3.2 Longitude and Latitude from ECEF Coordinates 41
2.3.3 ECEF Coordinates from Longitude and Latitude 43
2.4 Transformations for Stability and Flow Axes 44
2.5 Exercises 47
3 Dynamics of Marine Vessels 49
3.1 Rigid-Body Dynamics 50
3.1.1 Translational Motion 51
3.1.2 Rotational Motion (Attitude Dynamics) 53
3.1.3 Rigid-Body Equations of Motion 57
3.2 Hydrodynamic Forces and Moments 62
3.2.1 Added Mass and Inertia 64
3.2.2 Hydrodynamic Damping 71
3.2.3 Restoring Forces and Moments 75
3.2.4 Ballast Systems 82
3.3 6 DOF Equations of Motion 88
3.3.1 Nonlinear Equations of Motion 88
3.3.2 Linearized Equations of Motion 91
3.4 Model Transformations using Matlab 94
3.4.1 System Transformation Matrix 94
3.4.2 Computation of the System Inertia Matrix 96
3.4.3 Computation of the Coriolis-Centrifugal Matrix 100
3.4.4 Computation of the Damping Matrix 100
3.4.5 Computation of the Restoring Forces and Moments 102
3.5 Standard Models for Marine Vessels 103
3.5.1 3 DOF Horizontal Model 104
3.5.2 Decoupled Models for Forward Speed/Maneuvering 107
3.5.3 Longitudinal and Lateral Models 109
3.6 Exercises 113
4 Models for Wind, Waves and Ocean Currents 115
4.1 Wind Models 116
4.1.1 Wind Forces and Moments 116
4.1.2 Wind Resistance of Merchant Ships (Isherwood 1972) 117
4.1.3 Wind Resistance of Very Large Crude Carriers (OCIMF 1977) 120
4.1.4 Wind Resistance of Large Tankers and Medium Sized Ships 123
4.1.5 Wind Resistance of Moored Ships and Floating Structures 123
4.2 Models for Wind Generated Waves 123
4.2.1 Nonlinear Models of Wave Spectra 123
4.2.2 Linear Wave Response Models 130
4.2.3 Frequency of Encounter 136
4.2.4 Wave Forces and Moments 137
4.3 Models for Ocean Currents 138
4.3.1 3D Irrotational Current Model 139
4.3.2 2D Irrotational Current Model (Horizontal-Plane Model) 139
4.4 Exercises 140
Ⅱ Guidance, Navigation and Control Fundamentals 143
5 Maritime Guidance Systems 145
5.1 Reference Models 146
5.1.1 Velocity Reference Model 147
5.1.2 Position and Attitude Reference Models 147
5.1.3 Saturating Elements 148
5.1.4 Nonlinear Damping 148
5.2 Way-Point Guidance Systems 149
5.2.1 Trajectory Tracking and Maneuvering Control 149
5.2.2 Way-Point Representation 152
5.2.3 Trajectory Generation using a Vessel Simulator 154
5.2.4 Path and Trajectory Generation using Interpolation 156
5.2.5 Weather Routing 165
5.3 Line-of-Sight Guidance 167
5.3.1 2-Dimensional LOS Guidance System for Surface Vessel 168
5.3.2 3-Dimensional LOS Guidance System for Underwater Vehicles 169
5.4 Exercises 169
6 Estimator Based Navigation Systems 171
6.1 Observers for Heading Autopilots 172
6.1.1 Magnetic and Gyroscopic Compasses 172
6.1.2 Low-Pass and Notch Filtering of Wave Frequency Motions 173
6.1.3 Fixed Gain Observers using only Compass Measurements 177
6.1.4 Kalman Filter Based Wave Filter Design using only Compass Mea-surements 185
6.1.5 Observer and Wave Filter Design using both Compass and Rate Mea-surements 189
6.2 Observers for Dynamic Positioning Systems 191
6.2.1 Navigation Systems 191
6.2.2 Inertial Measurement Systems 194
6.2.3 Kalman Filter for Velocity and Wave Frequency Motion 196
6.2.4 Passive Nonlinear Observer for Velocity and Wave Frequency Motion 201
6.3 6 DOF Integration Filter for IMU and Satellite Navigation Systems 213
6.3.1 Integration Filter for Position and Linear Velocity 214
6.3.2 Attitude Observer 217
6.4 Exercises 221
7 Control Methods for Marine Vessels 223
7.1 PID-Control and Acceleration Feedback 224
7.1.1 Linear Mass-Damper-Spring Systems 224
7.1.2 Acceleration Feedback 228
7.1.3 Acceleration Feedback + PID Control 230
7.1.4 MIMO Acceleration Feedback and Nonlinear PID Control 233
7.1.5 Inertia Shaping Techniques using Acceleration Feedback 235
7.2 Linear Quadratic Optimal Control 237
7.2.1 Linear Quadratic Regulator 239
7.2.2 Extensions to Trajectory Tracking and Integral Action 240
7.2.3 General Solution of the LQ Trajectory Tracking Problem 242
7.3 State Feedback Linearization 250
7.3.1 Decoupling in the b-Frame (Velocity) 250
7.3.2 Decoupling in the n-Frame (Position and Attitude) 252
7.3.3 Adaptive Feedback Linearization 254
7.4 Integrator Backstepping 256
7.4.1 A Brief History of Backstepping 257
7.4.2 The Main Idea of Integrator Backstepping 257
7.4.3 Backstepping of SISO Mass-Damper-Spring Systems 264
7.4.4 Integral Action by Constant Parameter Adaptation 268
7.4.5 Integrator Augmentation Technique 272
7.4.6 Backstepping of MIMO Mass-Damper-Spring Systems 276
7.4.7 MIMO Backstepping of Ships 280
7.4.8 MIMO Backstepping Design with Acceleration Feedback 284
7.5 Control Allocation 288
7.5.1 Actuator Models 288
7.5.2 Unconstrained Control Allocation (Nonrotatable Actuators) 291
7.5.3 Constrained Control Allocation (Nonrotatable Actuators) 293
7.5.4 Constrained Control Allocation (Azimuthing Thrusters) 295
7.6 Exercises 298
Ⅲ Ship and Rig Applications 301
8 Course Autopilots 303
8.1 Autopilot Models 304
8.1.1 Rigid-Body Ship Dynamics 304
8.1.2 The Linear Ship Steering Equations 307
8.1.3 Non-Dimensional Autopilot Models 311
8.1.4 Nonlinear Models for Autopilot Design 315
8.2 Open-Loop Stability Analysis of Ships 320
8.2.1 Stability Considerations for Ship Steering and Positioning 320
8.2.2 Criteria for Straight-Line Stability 324
8.2.3 Criteria for Directional Stability 327
8.3 Maneuverability 328
8.3.1 Turning Circle 330
8.3.2 Kempf’s Zig-Zag Maneuver 334
8.3.3 Pull-Out Maneuver 336
8.3.4 Dieudonne’s Spiral Maneuver 338
8.3.5 Bech’s Reverse Spiral Maneuver 338
8.4 Course-Keeping Autopilots and Turning Control 340
8.4.1 Autopilot Reference Model 340
8.4.2 Conventional PID-Control 342
8.4.3 PID Control including Acceleration Feedback 347
8.4.4 PID Control including Wind Feedforward 349
8.4.5 Linear Quadratic Optimal Control 350
8.4.6 State Feedback Linearization 355
8.4.7 Adaptive Feedback Linearization and Optimality 356
8.4.8 Nonlinear Backstepping 358
8.4.9 SISO Sliding Mode Contiol 359
8.4.10 Output Feedback 363
8.5 Exercises 365
9 Autopilots with Roll Damping 367
9.1 Autopilot Models for Steering and Roll Damping 368
9.1.1 The Linear Model of Van Amerongen and Van Cappelle (1981) 368
9.1.2 The Nonlinear Model of Son and Nomoto (1981) 373
9.1.3 The Nonlinear Model of Christensen and Blanke (1986) 374
9.2 Rudder-Roll Damping (RRD) Control Systems 374
9.2.1 Linear Quadratic Optimal RRD Control System 375
9.2.2 Performance Criterion for RRD 380
9.3 Fin Stabilization Control Systems and RRD 380
9.3.1 Linear Quadratic Energy Optimal Autopilot with Roll Damping 381
9.4 Operability and Motion Sickness Incidence Criteria 384
9.4.1 Human Operability Limiting Criteria in Roll 384
9.4.2 Criterion for Motion Sickness Incidence (MSI) 384
9.5 Exercises 387
10 Trajectory Tracking and Maneuvering Control 389
10.1 Trajectory Tracking Control 389
10.1.1 Conventional PID Cross-Tracking System 390
10.1.2 Line of Sight Cross-Tracking System 391
10.1.3 Linear Quadratic Optimal Cross-Tracking System 392
10.1.4 Underactuated Trajectory Tracking Control 394
10.2 Maneuvering Control 394
10.2.1 Robust Output Maneuvering 396
10.2.2 Adaptive Output Maneuvering 404
10.2.3 Maneuvering Control of Underactuated Ships 415
10.3 Exercises 416
11 Positioning Systems 417
11.1 Models for Station-Keeping 417
11.1.1 Vessel Kinematics and Dynamics 417
11.1.2 DP and PM Thrust Models 418
11.1.3 Environmental Disturbances 422
11.2 Dynamic Positioning (DP) Systems 423
11.2.1 Thrust Allocation in DP Systems 424
11.2.2 Linear Quadratic Optimal Control 425
11.2.3 Nonlinear PID Control 427
11.2.4 Nonlinear Separation Principle for PD-Control/Observer Design 428
11.2.5 Nonlinear Observer Backstepping 436
11.2.6 Nonlinear Inverse Optimal Control 447
11.2.7 Underactuated Stabilization 448
11.3 Position Mooring (PM) Systems 449
11.4 Weather Optimal Positioning Control (WOPC) 450
11.4.1 3 DOF Equations of Motion using Polar Coordinates 451
11.4.2 Weather Optimal Control Objectives 454
11.4.3 Nonlinear and Adaptive Control Design 456
11.4.4 Experiments and Simulations 462
11.5 Exercises 467
Ⅳ Underwater Vehicle Applications 469
12 Propeller Control System Design 471
12.1 Models for Propeller Shaft Speed and Motors 471
12.1.1 Propeller Shaft Speed Models 471
12.1.2 Unified Representation of DC-Motor Controllers 473
12.1.3 Propeller Losses 475
12.2 Propeller Thrust and Torque Modelling 475
12.2.1 Quasi-Steady Thrust and Torque 476
12.3 Nonlinear Observer for Estimation of Propeller Axial Velocity 479
12.3.1 Vehicle Speed and Propeller Axial Flow Dynamics 479
12.3.2 Observer Equations 480
12.3.3 Lyapunov Analysis 481
12.4 Nonlinear Output Feedback Control Design 484
12.4.1 Nonlinear Model for Propeller Shaft Speed Control 485
12.4.2 Lyapunov Analysis 485
12.4.3 Extensions to Integral Control 487
13 Decoupled Autopilot Design 489
13.1 Course Autopilot 491
13.1.1 PID, Optimal Control and H∞-Control 491
13.1.2 Nonlinear Control 491
13.1.3 Sliding Mode Control using the Eigenvalue Decomposition 492
13.2 Depth Autopilot 495
13.2.1 Optimal Control 497
13.2.2 Sliding Mode Control using the Eigenvalue Decomposition 497
13.3 Speed Control System 498
13.4 Exercises 498
14 6 DOF Position and Attitude Control 501
14.1 Nonlinear PID Control 501
14.1.1 Set-Point Regulation 503
14.1.2 Trajectory Tracking Control 504
14.2 State Feedback Linearization 507
14.2.1 Trajectory Tracking Control 507
14.2.2 Adaptive Feedback Linearization 509
14.3 Exercises 511
Ⅴ Appendices 513
A Nonlinear Stability Theory 515
A.1 Lyapunov Stability for Autonomous Systems 515
A.1.1 Stability and Convergence 515
A.1.2 Lyapunov’s Direct Method 517
A.1.3 Krasovskii—LaSalle’s Theorem 518
A.1.4 Global Exponential Stability 519
A.2 Lyapunov Stability of Nonautonomous Systems 520
A.2.1 Barbalat’s Lemma 520
A.2.2 LaSalle-Yoshizawa’s Theorem 520
A.2.3 Matrosov’s Theorem 521
A.2.4 UGAS when Backstepping with Integral Action 522
B Numerical Methods 525
B.1 Discretization of Continuous-Time Systems 525
B.1.1 Linear State-Space Models 525
B.1.2 Nonlinear State-Space Models 527
B.2 Numerical Integration Methods 529
B.2.1 Euler’s Method 529
B.2.2 Adams-Bashforth’s 2nd-Order Method 530
B.2.3 Runge-Kutta 2nd-Order Method (Heun’s Method) 531
B.2.4 Runge-Kutta 4th-Order Method 531
B.3 Numerical Differentiation 531
C Matlab GNC Toolbox 533
C.1 M-File Library 534
C.2 Simulink Library 535