PART Ⅰ Fundamentals of Electron Theory 1
CHAPTER 1 Introduction 3
CHAPTER 2 The Wave-Particle Duality 6
Problems 13
CHAPTER 3 The Schrodinger Equation 14
3.1.The Time-Independent Schrodinger Equation 14
3.2.The Time-Dependent Schrodinger Equation 15
3.3.Special Properties of Vibrational Problems 16
Problems 17
CHAPTER 4 Solution of the Schrodinger Equation for Four Specific Problems 18
4.1.Free Electrons 18
4.2.Electron in a Potential Well (Bound Electron) 20
4.3.Finite Potential Barrier (Tunnel Effect) 24
4.4.Electron in a Periodic Field of a Crystal (the Solid State) 28
Problems 35
CHAPTER 5 Energy Bands in Crystals 36
5.1.One-Dimensional Zone Schemes 36
5.2.One- and Two-Dimensional Brillouin Zones 41
5.3.Three-Dimensional Brillouin Zones 45
5.4.Wigner-Seitz Cells 45
5.5.Translation Vectors and the Reciprocal Lattice 47
5.6.Free Electron Bands 52
5.7.Band Structures for Some Metals and Semiconductors 55
5.8.Curves and Planes of Equal Energy 58
Problems 60
CHAPTER6 Electrons in a Crystal 62
6.1.Fermi Energy and Fermi Surface 62
6.2.Fermi Distribution Function 63
6.3.Density of States 64
6.4.Population Density 66
6.5.Complete Density of States Function Within a Band 68
6.6.Consequences of the Band Model 69
6.7.Effective Mass 70
6.8.Conclusion 72
Problems 73
Suggestions for Further Reading (Part Ⅰ) 74
PART Ⅱ Electrical Properties of Materials 75
CHAPTER 7 Electrical Conduction in Metals and Alloys 77
7.1.Introduction 77
7.2.Survey 78
7.3.Conductivity—Classical Electron Theory 80
7.4.Conductivity—Quantum Mechanical Considerations 83
7.5.Experimental Results and Their Interpretation 87
7.5.1.Pure Metals 87
7.5.2.Alloys 88
7.5.3.Ordering 90
7.6.Superconductivity 91
7.6.1.Experimental Results 92
7.6.2.Theory 97
7.7.Thermoelectric Phenomena 100
Problems 103
CHAPTER 8 Semiconductors 104
8.1.Band Structure 104
8.2.Intrinsic Semiconductors 106
8.3.Extrinsic Semiconductors 111
8.3.1.Donors and Acceptors 111
8.3.2.Band Structure 112
8.3.3.Temperature Dependence of the Number of Carriers 113
8.3.4.Conductivity 114
8.3.5.Fermi Energy 115
8.4.Effective Mass 115
8.5.Hall Effect 116
8.6.Compound Semiconductors 118
8.7.Semiconductor Devices 119
8.7.1.Metal-Semiconductor Contacts 119
8.7.2.Rectifying Contacts (Schottky Barrier Contacts) 120
8.7.3.Ohmic Contacts (Metallizations) 124
8.7.4.p-n Rectifier (Diode) 125
8.7.5.Zener Diode 127
8.7.6.Solar Cell (Photodiode) 129
8.7.7.Avalanche Photodiode 132
8.7.8.Tunnel Diode 132
8.7.9.Transistors 134
8.7.10.Quantum Semiconductor Devices 142
8.7.11.Semiconductor Device Fabrication 146
8.7.12.Digital Circuits and Memory Devices 155
Problems 162
CHAPTER 9 Electrical Properties of Polymers,Ceramics,Dielectrics,and Amorphous Materials 166
9.1.Conducting Polymers and Organic Metals 166
9.2.Ionic Conduction 174
9.3.Conduction in Metal Oxides 177
9.4.Amorphous Materials (Metallic Glasses) 179
9.4.1.Xerography 184
9.5.Dielectric Properties 185
9.6.Ferroelectricity,Piezoelectricity,and Electrostriction 189
Problems 192
Suggestions for Further Reading (Part Ⅱ) 192
PART Ⅲ Optical Properties of Materials 195
CHAPTER 10 The Optical Constants 197
10.1.Introduction 197
10.2.Index of Refraction,n 199
10.3.Damping Constant,k 200
10.4.Characteristic Penetration Depth,W,and Absorbance,x 203
10.5.Reflectivity,R,and Transmittance,T 204
10.6.Hagen-Rubens Relation 206
Problems 207
CHAPTER 11 Atomistic Theory of the Optical Properties 208
11.1.Survey 208
11.2.Free Electrons Without Damping 210
11.3.Free Electrons With Damping (Classical Free Electron Theory of Metals) 214
11.4.Special Cases 217
11.5.Reflectivity 218
11.6.Bound Electrons (Classical Electron Theory of Dielectric Materials) 219
11.7.Discussion of the Lorentz Equations for Special Cases 222
11.7.1.High Frequencies 222
11.7.2.Small Damping 223
11.7.3:Absorption Near v 0 223
11.7.4.More Than One Oscillator 224
11.8.Contributions of Free Electrons and Harmonic Oscillators to the Optical Constants 224
Problems 225
CHAPTER 12 Quantum Mechanical Treatment of the Optical Properties 227
12.1.Introduction 227
12.2.Absorption of Light by Interband and Intraband Transitions 227
12.3.Optical Spectra of Materials 231
12.4.Dispersion 231
Problems 236
CHAPTER 13 Applications 238
13.1.Measurement of the Optical Properties 238
13.1.1.Kramers-Kronig Analysis (Dispersion Relations) 239
13.1.2.Spectroscopic Ellipsometry 239
13.1.3.Differential Reflectometry 242
13.2.Optical Spectra of Pure Metals 244
13.2.1.Reflection Spectra 244
13.2.2.Plasma Oscillations 249
13.3.Optical Spectra of Alloys 250
13.4.Ordering 254
13.5.Corrosion 256
13.6.Semiconductors 257
13.7.Insulators (Dielectric Materials and Glass Fibers) 260
13.8.Emission of Light 263
13.8.1.Spontaneous Emission 263
13.8.2.Stimulated Emission (Lasers) 264
13.8.3.Helium-Neon Laser 268
13.8.4.Carbon Dioxide Laser 270
13.8.5.Semiconductor Laser 270
13.8.6.Direct-Versus Indirect-Band Gap Semiconductor Lasers 271
13.8.7.Wavelength of Emitted Light 272
13.8.8.Threshold Current Density 274
13.8.9.Homojunction Versus Heterojunction Lasers 274
13.8.10.Laser Modulation 276
13.8.11.Laser Amplifier 276
13.8.12.Quantum Well Lasers 278
13.8.13.Light-Emitting Diodes (LEDs) 279
13.8.14.Liquid Crystal Displays (LCDs) 281
13.8.15.Emissive Flat-Panel Displays 283
13.9.Integrated Optoelectronics 285
13.9.1.Passive Waveguides 285
13.9.2.Electro-Optical Waveguides (EOW) 287
13.9.3.Optical Modulators and Switches 288
13.9.4.Coupling and Device Integration 289
13.9.5.Energy Losses 291
13.9.6.Photonics 293
13.10.Optical Storage Devices 293
13.11.The Optical Computer 296
13.12.X-Ray Emission 299
Problems 301
Suggestions for Further Reading (Part Ⅲ) 301
PART Ⅳ Magnetic Properties of Materials 303
CHAPTER 14 Foundations of Magnetism 305
14.1.Introduction 305
14.2.Basic Concepts in Magnetism 306
14.3.Units 310
Problems 310
CHAPTER 15 Magnetic Phenomena and Their Interpretation—Classical Approach 312
15.1.Overview 312
15.1.1.Diamagnetism 312
15.1.2.Paramagnetism 314
15.1.3.Ferromagnetism 317
15.1.4.Antiferromagnetism 323
15.1.5.Ferrimagnetism 325
15.2.Langevin Theory of Diamagnetism 327
15.3.Langevin Theory of (Electron Orbit) Paramagnetism 329
15.4.Molecular Field Theory 333
Problems 336
CHAPTER 16 Quantum Mechanical Considerations 338
16.1.Paramagnetism and Diamagnetism 338
16.2.Ferromagnetism and Antiferromagnetism 343
Problems 347
CHAPTER 17 Applications 349
17.1.Introduction 349
17.2.Electrical Steels (Soft Magnetic Materials) 349
17.2.1.Core Losses 350
17.2.2.Grain Orientation 352
17.2.3.Composition of Core Materials 354
17.2.4.Amorphous Ferromagnetics 354
17.3.Permanent Magnets (Hard Magnetic Materials) 355
17.4.Magnetic Recording and Magnetic Memories 358
Problems 364
Suggestions for Further Reading (PartⅣ) 364
PART Ⅴ Thermal Properties of Materials 365
CHAPTER 18 Introduction 367
CHAPTER 19 Fundamentals of Thermal Properties 370
19.1.Heat,Work,and Energy 370
19.2.Heat Capacity,C’ 371
19.3.Specific Heat Capacity,c 372
19.4.Molar Heat Capacity,Cv 372
19.5.Thermal Conductivity,K 374
19.6.The Ideal Gas Equation 375
19.7.Kinetic Energy of Gases 376
Problems 377
CHAPTER20 Heat Capacity 379
20.1.Classical (Atomistic) Theory of Heat Capacity 379
20.2.Quantum Mechanical Considerations—The Phonon 381
20.2.1.Einstein Model 381
20.2.2.Debye Model 384
20.3.Electronic Contribution to the Heat Capacity 385
Problems 389
CHAPTER 21 Thermal Conduction 390
21.1.Thermal Conduction in Metals and Alloys—Classical Approach 390
21.2.Thermal Conduction in Metals and Alloys—Quantum Mechanical Considerations 392
21.3.Thermal Conduction in Dielectric Materials 393
Problems 395
CHAPTER22 Thermal Expansion 397
Problems 399
Suggestions for Further Reading (PartⅤ) 399
Appendices 401
App.1.Periodic Disturbances 403
App.2.Euler Equations 407
App.3.Summary of Quantum Number Characteristics 408
App.4.Tables 410
App.5.About Solving Problems and Solutions to Problems 420
Index 426