1 Editorial:navigation,guidance and control of unmanned marine vehicles&G.N.Roberts and R.Sutton 1
1.1 Introduction 1
1.2 Contributions 4
1.3 Concluding Remarks 11
2 Nonlinear modelling,identification and control of UUVs&T.I.Fossen and A.Ross 13
2.1 Introduction 13
2.1.1 Notation 13
2.2 Modelling of UUVs 14
2.2.1 Six DOF kinematic equations 14
2.2.2 Kinetics 16
2.2.3 Equations of motion 16
2.2.4 Equations of motion including ocean currents 19
2.2.5 Longitudinal and lateral models 20
2.3 Identification of UUVs 24
2.3.1 A priori estimates of rigid-body parameters 25
2.3.2 A priori estimates of hydrodynamic added mass 25
2.3.3 Identification of damping terms 25
2.4 Nonlinear control of UUVs 31
2.4.1 Speed,depth and pitch control 32
2.4.2 Heading control 37
2.4.3 Alternative methods of control 40
2.5 Conclusions 40
3 Guidance laws,obstacle avoidance and artificial potential functions&A.J.Healey 43
3.1 Introduction 43
3.2 Vehicle guidance,track following 44
3.2.1 Vehicle steering model 45
3.2.2 Line of sight guidance 46
3.2.3 Cross-track error 47
3.2.4 Line of sight with cross-track error controller 49
3.2.5 Sliding mode cross-track error guidance 50
3.2.6 Large heading error mode 51
3.2.7 Track path transitions 52
3.3 Obstacle avoidance 52
3.3.1 Planned avoidance deviation in path 52
3.3.2 Reactive avoidance 54
3.4 Artificial potential functions 59
3.4.1 Potential function for obstacle avoidance 61
3.4.2 Multiple obstacles 62
3.5 Conclusions 64
3.6 Acknowledgements 65
4 Behaviour control of UUVs&M.Carreras,P.Ridao,R.Garcia and J.Batlle 67
4.1 Introduction 67
4.2 Principles of behaviour-based control systems 69
4.2.1 Coordination 71
4.2.2 Adaptation 72
4.3 Control architecture 72
4.3.1 Hybrid coordination of behaviours 73
4.3.2 Reinforcement learning-based behaviours 75
4.4 Experimental set-up 76
4.4.1 URIS UUV 76
4.4.2 Set-up 78
4.4.3 Software architecture 78
4.4.4 Computer vision as a navigation tool 79
4.5 Results 80
4.5.1 Target tracking task 80
4.5.2 Exploration and mapping of unknown environments 82
4.6 Conclusions 83
5 Thruster control allocation for over-actuated,open-frame underwater vehicles&E.Omerdic and G.N.Roberts 87
5.1 Introduction 87
5.2 Problem formulation 88
5.3 Nomenclature 90
5.3.1 Constrained control subset Ω 90
5.3.2 Attainable command set Φ 91
5.4 Pseudoinverse 92
5.5 Fixed-point iteration method 95
5.6 Hybrid approach 96
5.7 Application to thruster control allocation for over-actuated thruster-propelled UVs 98
5.8 Conclusions 103
6 Switching-based supervisory control of underwater vehicles&G.Ippoliti,L.Jetto and S.Longhi 105
6.1 Introduction 105
6.2 Multiple models switching-based supervisory control 106
6.3 The EBSC approach 109
6.3.1 An implementation aspect of the EBSC 110
6.4 The HSSC approach 111
6.4.1 The switching policy 111
6.5 Stability analysis 112
6.5.1 Estimation-based supervisory control 112
6.5.2 Hierarchically supervised switching control 113
6.6 The ROV model 114
6.6.1 The linearised model 116
6.7 Numerical results 116
6.8 Conclusions 121
7 Navigation,guidance and control of the Hammerhead autonomous underwater vehicle&D.Loebis,W.Naeem,R.Sutton,J.Chudley and A.Tiano 127
7.1 Introduction 127
7.2 The Hammerhead AUV navigation system 129
7.2.1 Fuzzy Kalman filter 129
7.2.2 Fuzzy logic observer 130
7.2.3 Fuzzy membership functions optimisation 131
7.2.4 Implementation results 131
7.2.5 GPS/INS navigation 136
7.3 System modelling 145
7.3.1 Identification results 146
7.4 Guidance 147
7.5 Hammerhead autopilot design 148
7.5.1 LQG/LTR controller design 149
7.5.2 Model predictive control 150
7.6 Concluding remarks 155
8 Robust control of autonomous underwater vehicles and verification on a tethered flight vehicle&Z.Feng and R.Allen 161
8.1 Introduction 161
8.2 Design of robust autopilots for torpedo-shaped AUVs 162
8.2.1 Dynamics of Subzero Ⅲ (excluding tether) 163
8.2.2 Plant models for control design 165
8.2.3 Design of reduced-order autopilots 166
8.3 Tether compensation for Subzero Ⅲ 169
8.3.1 Composite control scheme 169
8.3.2 Evaluation of tether effects 170
8.3.3 Reduction of tether effects 177
8.3.4 Verification of composite control by nonlinear simulations 179
8.4 Verification of robust autopilots via field tests 181
8.5 Conclusions 183
9 Low-cost high-precision motion control for ROVs&M.Caccia 187
9.1 Introduction 187
9.2 Related research 189
9.2.1 Modelling and identification 189
9.2.2 Guidance and control 189
9.2.3 Sensing technologies 190
9.3 Romeo ROV mechanical design 192
9.4 Guidance and control 193
9.4.1 Velocity control (dynamics) 194
9.4.2 Guidance (task kinematics) 195
9.5 Vision-based motion estimation 196
9.5.1 Vision system design 196
9.5.2 Three-dimensional optical laser triangulation sensor 199
9.5.3 Template detection and tracking 200
9.5.4 Motion from tokens 201
9.5.5 Pitch and roll disturbance rejection 201
9.6 Experimental results 202
9.7 Conclusions 208
10 Autonomous manipulation for an intervention AUV&G.Marani,J.Yuh and S.K. Choi 217
10.1 Introduction 217
10.2 Underwater manipulators 218
10.3 Control system 218
10.3.1 Kinematic control 218
10.3.2 Kinematics,inverse kinematics and redundancy resolution 223
10.3.3 Resolved motion rate control 223
10.3.4 Measure of manipulability 224
10.3.5 Singularity avoidance for a single task 225
10.3.6 Extension to inverse kinematics with task priority 227
10.3.7 Example 230
10.3.8 Collision and joint limits avoidance 230
10.4 Vehicle communication and user interface 232
10.5 Application example 233
10.6 Conclusions 236
11 AUV ‘r2D4’,its operation,and road map for AUV development&T.Ura 239
11.1 Introduction 239
11.2 AUV ‘r2D4’ and its no.16 dive at Rota Underwater Volcano 240
11.2.1 R-Two project 240
11.2.2 AUV ‘r2D4’ 241
11.2.3 Dive to Rota Underwater Volcano 244
11.3 Future view of AUV research and development 248
11.3.1 AUV diversity 250
11.3.2 Road map of R&D of AUVs 252
11.4 Acknowledgements 253
12 Guidance and control of a biomimetic-autonomous underwater vehicle&J.Guo 255
12.1 Introduction 255
12.2 Dynamic modelling 257
12.2.1 Rigid body dynamics 258
12.2.2 Hydrodynamics 263
12.3 Guidance and control of the BAUV 265
12.3.1 Guidance of the BAUV 266
12.3.2 Controller design 267
12.3.3 Experiments 270
12.4 Conclusions 273
13 Seabed-relative navigation by hybrid structured lighting&F.Dalgleish,S.Tetlow and R.L.Allwood 277
13.1 Introduction 277
13.2 Description of sensor configuration 279
13.3 Theory 279
13.3.1 Laser stripe for bathymetric and reflectivity seabed profiling 281
13.3.2 Region-based tracker 283
13.4 Constrained motion testing 283
13.4.1 Laser altimeter mode 283
13.4.2 Dynamic performance of the laser altimeter process 285
13.4.3 Dynamic performance of region-based tracker 286
13.4.4 Dynamic imaging performance 288
13.5 Summary 291
13.6 Acknowledgements 291
14 Advances in real-time spatio-temporal 3D data visualisation for underwater robotic exploration&S.C.Martin,L.L.Whitcomb,R.Arsenault,M.Plumlee and C. Ware 293
14.1 Introduction 293
14.1.1 The need for real-time spatio-temporal display of quantitative oceanographic sensor data 294
14.2 System design and implementation 295
14.2.1 Navigation 295
14.2.2 Real-time spatio-temporal data display with GeoZui3D 295
14.2.3 Real-time fusion of navigation data and scientific sensor data 297
14.3 Replay of survey data from Mediterranean expedition 300
14.4 Comparison of real-time system implemented on the JHU ROV to a laser scan 301
14.4.1 Real-time survey experimental set-up 301
14.4.2 Laser scan experimental set-up 302
14.4.3 Real-time system experimental results 303
14.4.4 Laser scan experimental results 303
14.4.5 Comparison of laser scan to real-time system 305
14.5 Preliminary field trial on the Jason 2 ROV 305
14.6 Conclusions and future work 308
15 Unmanned surface vehicles-game changing technology for naval operations&S.J.Corfield and J.M.Young 311
15.1 Introduction 311
15.2 Unmanned surface vehicle research and development 312
15.3 Summary of major USV subsystems 313
15.3.1 The major system partitions 313
15.3.2 Major USV subsystems 314
15.3.3 Hulls 314
15.3.4 Auxiliary structures 316
15.3.5 Engines,propulsion subsystems and fuel systems 316
15.3.6 USV autonomy,mission planning and navigation,guidance and control 317
15.4 USV payload systems 318
15.5 USV launch and recovery systems 319
15.6 USV development examples:MIMIR,SWIMS and FENRIR 319
15.6.1 The MIMIR USV system 319
15.6.2 The SWIMS USV system 321
15.6.3 The FENRIR USV system and changing operationalscenarios 325
15.7 The game changing potential of USVs 326
16 Modelllng,simulation and control of an autonomous surface marine vehicle for surveying applications Measuring Dolphin MESSIN&J.Majohr and T.Buch 329
16.1 Introduction and objectives 329
16.2 Hydromechanical conception of the MESSIN 330
16.3 Electrical developments of the MESSIN 332
16.4 Hierarchical steering system and overall steering structure 333
16.5 Positioning and navigation 336
16.6 Modelling and identification 337
16.6.1 Second-order course model [16] 338
16.6.2 Fourth-order track model [17] 338
16.7 Route planning,mission control and automatic control 342
16.8 Implementation and simulation 344
16.9 Test results and application 346
17 Vehicle and mission control of single and multiple autonomous marine robots&A.Pascoal,C.Silvestre and P.Oliveira 353
17.1 Introduction 353
17.2 Marine vehicles 354
17.2.1 The Infante AUV 354
17.2.2 The Delfim ASC 355
17.2.3 The Sirene underwater shuttle 356
17.2.4 The Caravela 2000 autonomous research vessel 357
17.3 Vehicle control 358
17.3.1 Control problems:motivation 359
17.3.2 Control problems:design techniques 362
17.4 Mission control and operations at sea 375
17.4.1 The CORAL mission control system 376
17.4.2 Missions at sea 379
17.5 Conclusions 380
18 Wave-piercing autonomous vehicles&H.Young,J.Ferguson,S.Phillips and D.Hook 387
18.1 Introduction 387
18.1.1 Abbreviations and definitions 387
18.1.2 Concepts 388
18.1.3 Historical development 388
18.2 Wave-piercing autonomous underwater vehicles 390
18.2.1 Robotic mine-hunting concept 391
18.2.2 Early tests 393
18.2.3 US Navy RMOP 393
18.2.4 The Canadian ‘Dorado’ and development of the French ‘SeaKeeper’ 394
18.3 Wave-piercing autonomous surface vehicles 396
18.3.1 Development programme 398
18.3.2 Command and control 400
18.3.3 Launch and recovery 401
18.3.4 Applications 402
18.4 Daughter vehicles 403
18.4.1 Applications 404
18.5 Mobile buoys 405
18.5.1 Applications 405
18.6 Future development of unmanned wave-piercing vehicles 405
19 Dynamics,control and coordination of underwater gliders&R.Bachmayer,N.E.Leonard,P.Bhatta,E.Fiorelli and J.G.Graver 407
19.1 Introduction 407
19.2 A mathematical model for underwater gliders 408
19.3 Glider stability and control 412
19.3.1 Linear analysis 412
19.3.2 Phugoid-mode model 415
19.4 Slocum glider model 417
19.4.1 The Slocum glider 417
19.4.2 Glider identification 419
19.5 Coordinated glider control and operations 424
19.5.1 Coordinating gliders with virtual bodies and artificial potentials 425
19.5.2 VBAP glider implementation issues 426
19.5.3 AOSN Ⅱ sea trials 426
19.6 Final remarks 429
Index 433