《Advances in Unmanned Marine Vehicles》PDF下载

  • 购买积分:14 如何计算积分?
  • 作  者:
  • 出 版 社:Institution of Electrical Engineers
  • 出版年份:2006
  • ISBN:0863414508
  • 页数:441 页
图书介绍:

1 Editorial:navigation,guidance and control of unmanned marine vehicles&G.N.Roberts and R.Sutton 1

1.1 Introduction 1

1.2 Contributions 4

1.3 Concluding Remarks 11

2 Nonlinear modelling,identification and control of UUVs&T.I.Fossen and A.Ross 13

2.1 Introduction 13

2.1.1 Notation 13

2.2 Modelling of UUVs 14

2.2.1 Six DOF kinematic equations 14

2.2.2 Kinetics 16

2.2.3 Equations of motion 16

2.2.4 Equations of motion including ocean currents 19

2.2.5 Longitudinal and lateral models 20

2.3 Identification of UUVs 24

2.3.1 A priori estimates of rigid-body parameters 25

2.3.2 A priori estimates of hydrodynamic added mass 25

2.3.3 Identification of damping terms 25

2.4 Nonlinear control of UUVs 31

2.4.1 Speed,depth and pitch control 32

2.4.2 Heading control 37

2.4.3 Alternative methods of control 40

2.5 Conclusions 40

3 Guidance laws,obstacle avoidance and artificial potential functions&A.J.Healey 43

3.1 Introduction 43

3.2 Vehicle guidance,track following 44

3.2.1 Vehicle steering model 45

3.2.2 Line of sight guidance 46

3.2.3 Cross-track error 47

3.2.4 Line of sight with cross-track error controller 49

3.2.5 Sliding mode cross-track error guidance 50

3.2.6 Large heading error mode 51

3.2.7 Track path transitions 52

3.3 Obstacle avoidance 52

3.3.1 Planned avoidance deviation in path 52

3.3.2 Reactive avoidance 54

3.4 Artificial potential functions 59

3.4.1 Potential function for obstacle avoidance 61

3.4.2 Multiple obstacles 62

3.5 Conclusions 64

3.6 Acknowledgements 65

4 Behaviour control of UUVs&M.Carreras,P.Ridao,R.Garcia and J.Batlle 67

4.1 Introduction 67

4.2 Principles of behaviour-based control systems 69

4.2.1 Coordination 71

4.2.2 Adaptation 72

4.3 Control architecture 72

4.3.1 Hybrid coordination of behaviours 73

4.3.2 Reinforcement learning-based behaviours 75

4.4 Experimental set-up 76

4.4.1 URIS UUV 76

4.4.2 Set-up 78

4.4.3 Software architecture 78

4.4.4 Computer vision as a navigation tool 79

4.5 Results 80

4.5.1 Target tracking task 80

4.5.2 Exploration and mapping of unknown environments 82

4.6 Conclusions 83

5 Thruster control allocation for over-actuated,open-frame underwater vehicles&E.Omerdic and G.N.Roberts 87

5.1 Introduction 87

5.2 Problem formulation 88

5.3 Nomenclature 90

5.3.1 Constrained control subset Ω 90

5.3.2 Attainable command set Φ 91

5.4 Pseudoinverse 92

5.5 Fixed-point iteration method 95

5.6 Hybrid approach 96

5.7 Application to thruster control allocation for over-actuated thruster-propelled UVs 98

5.8 Conclusions 103

6 Switching-based supervisory control of underwater vehicles&G.Ippoliti,L.Jetto and S.Longhi 105

6.1 Introduction 105

6.2 Multiple models switching-based supervisory control 106

6.3 The EBSC approach 109

6.3.1 An implementation aspect of the EBSC 110

6.4 The HSSC approach 111

6.4.1 The switching policy 111

6.5 Stability analysis 112

6.5.1 Estimation-based supervisory control 112

6.5.2 Hierarchically supervised switching control 113

6.6 The ROV model 114

6.6.1 The linearised model 116

6.7 Numerical results 116

6.8 Conclusions 121

7 Navigation,guidance and control of the Hammerhead autonomous underwater vehicle&D.Loebis,W.Naeem,R.Sutton,J.Chudley and A.Tiano 127

7.1 Introduction 127

7.2 The Hammerhead AUV navigation system 129

7.2.1 Fuzzy Kalman filter 129

7.2.2 Fuzzy logic observer 130

7.2.3 Fuzzy membership functions optimisation 131

7.2.4 Implementation results 131

7.2.5 GPS/INS navigation 136

7.3 System modelling 145

7.3.1 Identification results 146

7.4 Guidance 147

7.5 Hammerhead autopilot design 148

7.5.1 LQG/LTR controller design 149

7.5.2 Model predictive control 150

7.6 Concluding remarks 155

8 Robust control of autonomous underwater vehicles and verification on a tethered flight vehicle&Z.Feng and R.Allen 161

8.1 Introduction 161

8.2 Design of robust autopilots for torpedo-shaped AUVs 162

8.2.1 Dynamics of Subzero Ⅲ (excluding tether) 163

8.2.2 Plant models for control design 165

8.2.3 Design of reduced-order autopilots 166

8.3 Tether compensation for Subzero Ⅲ 169

8.3.1 Composite control scheme 169

8.3.2 Evaluation of tether effects 170

8.3.3 Reduction of tether effects 177

8.3.4 Verification of composite control by nonlinear simulations 179

8.4 Verification of robust autopilots via field tests 181

8.5 Conclusions 183

9 Low-cost high-precision motion control for ROVs&M.Caccia 187

9.1 Introduction 187

9.2 Related research 189

9.2.1 Modelling and identification 189

9.2.2 Guidance and control 189

9.2.3 Sensing technologies 190

9.3 Romeo ROV mechanical design 192

9.4 Guidance and control 193

9.4.1 Velocity control (dynamics) 194

9.4.2 Guidance (task kinematics) 195

9.5 Vision-based motion estimation 196

9.5.1 Vision system design 196

9.5.2 Three-dimensional optical laser triangulation sensor 199

9.5.3 Template detection and tracking 200

9.5.4 Motion from tokens 201

9.5.5 Pitch and roll disturbance rejection 201

9.6 Experimental results 202

9.7 Conclusions 208

10 Autonomous manipulation for an intervention AUV&G.Marani,J.Yuh and S.K. Choi 217

10.1 Introduction 217

10.2 Underwater manipulators 218

10.3 Control system 218

10.3.1 Kinematic control 218

10.3.2 Kinematics,inverse kinematics and redundancy resolution 223

10.3.3 Resolved motion rate control 223

10.3.4 Measure of manipulability 224

10.3.5 Singularity avoidance for a single task 225

10.3.6 Extension to inverse kinematics with task priority 227

10.3.7 Example 230

10.3.8 Collision and joint limits avoidance 230

10.4 Vehicle communication and user interface 232

10.5 Application example 233

10.6 Conclusions 236

11 AUV ‘r2D4’,its operation,and road map for AUV development&T.Ura 239

11.1 Introduction 239

11.2 AUV ‘r2D4’ and its no.16 dive at Rota Underwater Volcano 240

11.2.1 R-Two project 240

11.2.2 AUV ‘r2D4’ 241

11.2.3 Dive to Rota Underwater Volcano 244

11.3 Future view of AUV research and development 248

11.3.1 AUV diversity 250

11.3.2 Road map of R&D of AUVs 252

11.4 Acknowledgements 253

12 Guidance and control of a biomimetic-autonomous underwater vehicle&J.Guo 255

12.1 Introduction 255

12.2 Dynamic modelling 257

12.2.1 Rigid body dynamics 258

12.2.2 Hydrodynamics 263

12.3 Guidance and control of the BAUV 265

12.3.1 Guidance of the BAUV 266

12.3.2 Controller design 267

12.3.3 Experiments 270

12.4 Conclusions 273

13 Seabed-relative navigation by hybrid structured lighting&F.Dalgleish,S.Tetlow and R.L.Allwood 277

13.1 Introduction 277

13.2 Description of sensor configuration 279

13.3 Theory 279

13.3.1 Laser stripe for bathymetric and reflectivity seabed profiling 281

13.3.2 Region-based tracker 283

13.4 Constrained motion testing 283

13.4.1 Laser altimeter mode 283

13.4.2 Dynamic performance of the laser altimeter process 285

13.4.3 Dynamic performance of region-based tracker 286

13.4.4 Dynamic imaging performance 288

13.5 Summary 291

13.6 Acknowledgements 291

14 Advances in real-time spatio-temporal 3D data visualisation for underwater robotic exploration&S.C.Martin,L.L.Whitcomb,R.Arsenault,M.Plumlee and C. Ware 293

14.1 Introduction 293

14.1.1 The need for real-time spatio-temporal display of quantitative oceanographic sensor data 294

14.2 System design and implementation 295

14.2.1 Navigation 295

14.2.2 Real-time spatio-temporal data display with GeoZui3D 295

14.2.3 Real-time fusion of navigation data and scientific sensor data 297

14.3 Replay of survey data from Mediterranean expedition 300

14.4 Comparison of real-time system implemented on the JHU ROV to a laser scan 301

14.4.1 Real-time survey experimental set-up 301

14.4.2 Laser scan experimental set-up 302

14.4.3 Real-time system experimental results 303

14.4.4 Laser scan experimental results 303

14.4.5 Comparison of laser scan to real-time system 305

14.5 Preliminary field trial on the Jason 2 ROV 305

14.6 Conclusions and future work 308

15 Unmanned surface vehicles-game changing technology for naval operations&S.J.Corfield and J.M.Young 311

15.1 Introduction 311

15.2 Unmanned surface vehicle research and development 312

15.3 Summary of major USV subsystems 313

15.3.1 The major system partitions 313

15.3.2 Major USV subsystems 314

15.3.3 Hulls 314

15.3.4 Auxiliary structures 316

15.3.5 Engines,propulsion subsystems and fuel systems 316

15.3.6 USV autonomy,mission planning and navigation,guidance and control 317

15.4 USV payload systems 318

15.5 USV launch and recovery systems 319

15.6 USV development examples:MIMIR,SWIMS and FENRIR 319

15.6.1 The MIMIR USV system 319

15.6.2 The SWIMS USV system 321

15.6.3 The FENRIR USV system and changing operationalscenarios 325

15.7 The game changing potential of USVs 326

16 Modelllng,simulation and control of an autonomous surface marine vehicle for surveying applications Measuring Dolphin MESSIN&J.Majohr and T.Buch 329

16.1 Introduction and objectives 329

16.2 Hydromechanical conception of the MESSIN 330

16.3 Electrical developments of the MESSIN 332

16.4 Hierarchical steering system and overall steering structure 333

16.5 Positioning and navigation 336

16.6 Modelling and identification 337

16.6.1 Second-order course model [16] 338

16.6.2 Fourth-order track model [17] 338

16.7 Route planning,mission control and automatic control 342

16.8 Implementation and simulation 344

16.9 Test results and application 346

17 Vehicle and mission control of single and multiple autonomous marine robots&A.Pascoal,C.Silvestre and P.Oliveira 353

17.1 Introduction 353

17.2 Marine vehicles 354

17.2.1 The Infante AUV 354

17.2.2 The Delfim ASC 355

17.2.3 The Sirene underwater shuttle 356

17.2.4 The Caravela 2000 autonomous research vessel 357

17.3 Vehicle control 358

17.3.1 Control problems:motivation 359

17.3.2 Control problems:design techniques 362

17.4 Mission control and operations at sea 375

17.4.1 The CORAL mission control system 376

17.4.2 Missions at sea 379

17.5 Conclusions 380

18 Wave-piercing autonomous vehicles&H.Young,J.Ferguson,S.Phillips and D.Hook 387

18.1 Introduction 387

18.1.1 Abbreviations and definitions 387

18.1.2 Concepts 388

18.1.3 Historical development 388

18.2 Wave-piercing autonomous underwater vehicles 390

18.2.1 Robotic mine-hunting concept 391

18.2.2 Early tests 393

18.2.3 US Navy RMOP 393

18.2.4 The Canadian ‘Dorado’ and development of the French ‘SeaKeeper’ 394

18.3 Wave-piercing autonomous surface vehicles 396

18.3.1 Development programme 398

18.3.2 Command and control 400

18.3.3 Launch and recovery 401

18.3.4 Applications 402

18.4 Daughter vehicles 403

18.4.1 Applications 404

18.5 Mobile buoys 405

18.5.1 Applications 405

18.6 Future development of unmanned wave-piercing vehicles 405

19 Dynamics,control and coordination of underwater gliders&R.Bachmayer,N.E.Leonard,P.Bhatta,E.Fiorelli and J.G.Graver 407

19.1 Introduction 407

19.2 A mathematical model for underwater gliders 408

19.3 Glider stability and control 412

19.3.1 Linear analysis 412

19.3.2 Phugoid-mode model 415

19.4 Slocum glider model 417

19.4.1 The Slocum glider 417

19.4.2 Glider identification 419

19.5 Coordinated glider control and operations 424

19.5.1 Coordinating gliders with virtual bodies and artificial potentials 425

19.5.2 VBAP glider implementation issues 426

19.5.3 AOSN Ⅱ sea trials 426

19.6 Final remarks 429

Index 433