《医学生物识别 数字化中医数据分析 英文版》PDF下载

  • 购买积分:13 如何计算积分?
  • 作  者:David Zhang,Wangmeng Zuo,Naimin Li著
  • 出 版 社:北京:高等教育出版社
  • 出版年份:2015
  • ISBN:9787040428834
  • 页数:398 页
图书介绍:现代信息技术引入中医(TCM)不仅可以获得中医数千年的客观进程,同时对现代医学也提供了新的发现。这本书是基于作者十余年的研究成果,全面、系统介绍中医数据计算机处理和分析的优秀著作。本书分4个部分共10章,主要介绍中医舌象、脉冲信号和呼吸气味信号三种类型的数据,通过计算机数据分析(CTDA)、图像分析、脉冲分析和气味分析,实现中医数据化的基本理论、技术和方法。第一部分(第1章)是对本书内容的简要介绍;第2部分(第2章~第5章)介绍中医舌诊诊断特征,按颜色、纹理、形状和其他病理特点进行数据提取和分析;第3部分(第6章~第8章)讲述中医脉诊的脉冲数据分析;第4部分(第9章~第10章)对呼吸气味数据的采集、分析进行的讲解。本书研究基础扎实,内容翔实、严谨。可作为计算机中医药数据分析领域研究人员的专业用书,也可供计算机图像识别、中医学等专业研究生参考使用。

PART Ⅰ:DIAGNOSIS METHODS IN TRADITIONAL CHINESE MEDICINE 3

Chapter 1 Introduction 3

1.1 Diagnosis Methods in Traditional Chinese Medicine 3

1.1.1 Tongue Diagnosis 3

1.1.2 Pulse Diagnosis 5

1.1.3 Breath Odor Diagnosis 6

1.2 Computerized TCM Diagnosis 7

1.2.1 Computerized Tongue Diagnosis 7

1.2.2 Computerized Pulse Diagnosis 11

1.2.3 Computerized Breath Odor Diagnosis 14

1.3 Summary 17

References 17

PART Ⅱ:COMPUTERIZED TONGUE IMAGE ANALYSIS 29

Chapter 2 Tongue Image Acquisition and Preprocessing 29

2.1 Tongue Image Acquisition 29

2.1.1 Requirement Analysis 31

2.1.2 System Design and Implementation 33

2.1.3 Performance Analysis 43

2.2 Color Correction 49

2.2.1 Color Correction Algorithms 51

2.2.2 Evaluation of Correction Algorithms 53

2.2.3 Discussion 61

2.3 Summary 67

References 68

Chapter 3 Automated Tongue Segmentation 73

3.1 Bi-Elliptical Deformable Contour 73

3.1.1 Bi-Elliptical Deformable Template for the Tongue 74

3.1.2 Combined Model for Tongue Segmentation 78

3.1.3 Results and Analysis 84

3.2 Snake with Polar Edge Detector 91

3.2.1 The Segmentation Algorithm 91

3.2.2 Experimental Results 99

3.3 Gabor Magnitude-based Edge Detection and Fast Marching 104

3.3.1 2D Gabor Magnitude-based Edge Detection 105

3.3.2 Contour Detection Using Fast Marching and Active Contour Model 109

3.3.3 Experimental Results 111

3.4 Summary 114

References 114

Chapter 4 Tongue Image Feature Analysis 117

4.1 Color Feature Analysis 117

4.1.1 Exploratory Tongue Color Analysis 118

4.1.2 Statistical Analysis of Tongue Color Distribution 124

4.2 Tongue Texture Analysis 143

4.3 Tongue Shape Analysis 144

4.3.1 Shape Correction 144

4.3.2 Extraction of Shape Features 149

4.3.3 Tongue Shape Classification 153

4.4 Extraction of Other Local Pathological Features 158

4.4.1 Petechia 158

4.4.2 Tongue Crack 160

4.4.3 Tongueprint 160

4.4.4 Sublingual Veins 161

4.5 Summary 162

References 163

Chapter 5 Computerized Tongue Diagnosis 167

5.1 Bayesian Network for Computerized Tongue Diagnosis 167

5.1.1 Quantitative Pathological Features Extraction 167

5.1.2 Bayesian Networks 169

5.1.3 Experimental Results 171

5.2 Diagnosis Based on Hyperspectral Tongue Images 178

5.2.1 Hyperspectral Tongue Images 179

5.2.2 The SVM Classifier Applied to Hyperspectral Tongue Images 180

5.2.3 Experimental Results 183

5.3 Summary 186

References 187

PART Ⅲ:COMPUTERIZED PULSE SIGNAL ANALYSIS 191

Chapter 6 Pulse Signal Acquisition and Preprocessing 191

6.1 Pressure Pulse Signal Acquisition 191

6.1.1 Application Scenario and Requirement Analysis 192

6.1.2 System Architecture 193

6.1.3 Multi-Channel Pulse Signals 201

6.2 Baseline Wander Correction of Pulse Signals 206

6.2.1 Detecting the Onsets of Pulse Wave 207

6.2.2 Wavelet Based Cascaded Adaptive Filter 209

6.2.3 Results on Actual Pulse Signals 221

6.3 Summary 223

References 224

Chapter 7 Feature Extraction of Pulse Signals 227

7.1 Spatial Feature Extraction 227

7.1.1 Fiducial Point-based Methods 227

7.1.2 Approximate Entropy 229

7.2 Frequency Feature Extraction 230

7.2.1 Hilbert-Huang Transform 230

7.2.2 Wavelet and Wavelet Packet Transform 232

7.3 AR Model 234

7.4 Gaussian Mixture Model 236

7.4.1 Two-term Gaussian Model 236

7.4.2 Feature Selection 240

7.4.3 FCM Clustering 242

7.5 Summary 242

References 243

Chapter 8 Classification of Pulse Signals 245

8.1 Pulse Waveform Classification 245

8.1.1 Modules of Pulse Waveform Classification 246

8.1.2 The EDFC and GEKC Classifiers 251

8.1.3 Experimental Results 255

8.2 Arrhythmic Pulses Derection 257

8.2.1 Clinical Value of Pulse Rhythm Analysis 257

8.2.2 Automatic Recognition of Pulse Rhythms 259

8.2.3 Experimental Results 272

8.3 Combination of Heterogeneous Features for Pulse Diagnosis 274

8.3.1 Multiple Kernel Learning 275

8.3.2 Experimental Results and Discussion 279

8.4 Summary 282

References 283

PART Ⅳ:COMPUTERIZED ODOR SIGNAL ANALYSIS 289

Chapter 9 Breath Analysis System:Design and Optimization 289

9.1 Breath Analysis 289

9.2 Design of Breath Analysis System 291

9.2.1 Description of the System 291

9.2.2 Signal Sampling and Preprocessing 296

9.3 Sensor Selection 299

9.3.1 Linear Discriminant Analysis 299

9.3.2 Sensor Selection in Breath Analysis System 304

9.3.3 Comparison Experiment and Performance Analysis 314

9.4 Summary 317

References 317

Chapter 10 Feature Extraction and Classification of Breath Odor Signals 321

10.1 Feature Extraction of Odor Signals 321

10.1.1 Geometry Features 322

10.1.2 Principal Component Analysis 324

10.1.3 Wavelet Packet Decomposition 324

10.1.4 Gaussian Function Representation 325

10.1.5 Gaussian Basis Representation 331

10.1.6 Experimental Results 334

10.2 Common Classifiers for Odor Signal Classification 336

10.2.1 K Nearest Neighbor 337

10.2.2 Artificial Neural Network 337

10.2.3 Support Vector Machine 337

10.3 Sparse Representation Classification 338

10.3.1 Data Expression 338

10.3.2 Test Sample Representation by Training Samples 339

10.3.3 Samples Sampling Errors 340

10.3.4 Voting Rules 341

10.3.5 Identification Steps 342

10.4 Support Vector Ordinal Regression 342

10.4.1 Problem Analysis 342

10.4.2 Basic Idea of Support Vector Regression 343

10.4.3 Support Vector Ordinal Regression 344

10.4.4 The Dual Problem 345

10.4.5 Identification Steps 346

10.5 Evaluation on Classification methods 347

10.5.1 Evaluation on SRC 347

10.5.2 Evaluation on SRC 351

10.6 Summary 355

References 355

Index 359