第七章 多元函数微分学 1
第一节 空间解析几何基础 1
第二节 多元函数的概念 9
第三节 多元函数的极限与连续 12
第四节 偏导数 16
第五节 全微分 22
第六节 多元复合函数的求导法则 26
第七节 隐函数的求导公式 30
第八节 多元函数的极值与最值 33
习题七 41
第八章 二重积分 45
第一节 二重积分的概念与性质 45
第二节 二重积分的计算 49
习题八 59
第九章 无穷级数 63
第一节 常数项级数的概念 63
第二节 常数项级数的审敛法 68
第三节 幂级数 76
第四节 函数展开成幂级数 83
第五节 函数的幂级数展开式的应用 91
习题九 95
第十章 常微分方程 98
第一节 微分方程的基本概念 98
第二节 可分离变量的微分方程 103
第三节 齐次微分方程 106
第四节 一阶线性微分方程 109
第五节 可降阶的高阶微分方程 118
第六节 二阶线性微分方程解的结构 121
第七节 二阶常系数齐次线性微分方程 124
第八节 二阶常系数非齐次线性微分方程 129
习题十 136
第十一章 差分方程 140
第一节 差分方程的基本概念 140
第二节 线性差分方程 141
第三节 一阶常系数线性差分方程 142
第四节 二阶常系数线性差分方程 144
习题十一 148
习题参考答案 149
附录 微积分学简史 157