第一部分 块结构模型 3
第1章 块结构模型概述 3
1.1 引言 3
1.2 静态非线性环节与动态线性环节的同步辨识法 4
1.2.1 过参数化法 4
1.2.2 子空间法 6
1.2.3 调制函数法 6
1.2.4 直接辨识法 7
1.3 静态非线性环节与动态线性环节的分步辨识法 8
1.3.1 迭代法 8
1.3.2 分离最小二乘法 9
1.3.3 多信号源法 10
1.3.4 盲辨识法 11
1.3.5 频域法 12
1.3.6 随机法 12
1.4 基于Hammerstein模型的控制系统设计 13
1.5 块结构模型研究中存在的关键问题 15
1.6 全书概况 16
参考文献 18
第二部分 基于二进制-随机复合信号源的块结构模型辨识方法 27
第2章 基于二进制-随机复合信号源的Hammerstein模型辨识方法 27
2.1 基于泰勒级数展开法的Hammerstein模型辨识 27
2.1.1 基于神经模糊的Hammerstein模型 27
2.1.2 基于神经模糊Hammerstein模型的辨识 30
2.1.3 实验结果 32
2.1.4 小结 41
2.2 基于Lyapunov方法的Hammerstein模型辨识 43
2.2.1 神经模糊Hammerstein模型 43
2.2.2 神经模糊Hammerstein模型辨识 44
2.2.3 实验结果 47
2.2.4 小结 54
参考文献 54
第3章 基于二进制-随机复合信号源的Hammerstein-Wiener模型辨识方法 56
3.1 基于二进制-随机复合信号源的Hammerstein-Wiener模型 56
3.1.1 神经模糊Hammerstein-Wiener模型 57
3.1.2 神经模糊Hammerstein-Wiener模型各串联环节的分离 58
3.1.3 基于神经模糊Hammerstein-Wiener模型的控制系统 64
3.1.4 实验结果 64
3.1.5 小结 67
3.2 基于两阶段复合信号的Hammerstein-Wiener模型 68
3.2.1 基于两阶段复合信号的神经模糊Hammerstein-Wiener模型 68
3.2.2 实验结果 71
3.2.3 小结 73
参考文献 74
第4章 含过程噪声的块结构模型二进制-随机复合信号源辨识方法 76
4.1 基于辅助模型递推最小二乘法的Hammerstein模型 76
4.1.1 一类含过程噪声的Hammerstein模型 76
4.1.2 基于辅助模型递推最小二乘法的Hammerstein模型多信号源辨识方法 77
4.1.3 实验结果 79
4.1.4 小结 82
4.2 基于偏差补偿递推最小二乘法的Hammerstein-Wiener模型 82
4.2.1 一类含过程噪声的Hammerstein-Wiener模型 83
4.2.2 基于偏差补偿递推最小二乘法的Hammerstein--Wiener模型多信号源辨识方法 84
4.2.3 实验结果 87
4.2.4 小结 90
4.3 基于辅助模型多新息随机梯度法的Hammerstein模型 92
4.3.1 基于辅助模型多新息随机梯度法的Hammerstein模型多信号源辨识方法 92
4.3.2 实验结果 95
4.3.3 小结 98
参考文献 98
第三部分 基于可分离信号源的块结构模型辨识方法 101
第5章 基于可分离信号源的多输入多输出Hammerstein模型辨识方法 101
5.1 多输入多输出Hammerstein模型 101
5.2 基于可分离信号源的多输入多输出Hammerstein模型辨识 102
5.2.1 基于神经模糊的多输入多输出Hammerstein模型 102
5.2.2 基于可分离信号源的多输入多输出Hammerstein模型辨识 103
5.2.3 实验结果 109
5.2.4 小结 117
参考文献 117
第6章 含过程噪声的多输入多输出Hammerstein模型可分离信号源辨识方法 119
6.1 含过程噪声的多输入多输出Hammerstein模型辨识 119
6.1.1 含过程噪声的多输入多输出Hammerstein模型 119
6.1.2 含过程噪声的多输入多输出Hammerstein模型辨识 120
6.1.3 实验结果 124
6.1.4 小结 135
6.2 基于可分离信号的Hammerstein输出误差滑动平均系统辨识 136
6.2.1 Hammerstein输出误差滑动平均系统 136
6.2.2 神经模糊Hammerstein输出误差滑动平均系统辨识 137
6.2.3 实验结果 143
6.2.4 小结 146
参考文献 148
第7章 含过程噪声的Hammerstein-Wiener模型可分离信号源辨识方法 149
7.1 基于可分离信号的Hammerstein-Wiener模型辨识方法 149
7.1.1 神经模糊FIR Hammerstein-Wiener模型 149
7.1.2 神经模糊Hammerstein-Wiener模型辨识方法 150
7.1.3 基于Hammerstein-Wiener模型的控制系统设计 154
7.1.4 实验结果 154
7.1.5 小结 159
7.2 基于递推广义增广最小二乘法的Hammerstein-Wiener模型可分离信号源辨识 159
7.2.1 噪声干扰下的FIR Hammerstein-Wiener模型 159
7.2.2 基于递推广义增广最小二乘法的Hammerstein-Wiener辨识 160
7.2.3 实验结果 166
7.2.4 小结 170
参考文献 171