《Microwave engineering = 微波工程 (英文版) (第三版)》PDF下载

  • 购买积分:18 如何计算积分?
  • 作  者:David M. Pozar
  • 出 版 社:Publishing House of Electronics Industry
  • 出版年份:2006
  • ISBN:7121031698
  • 页数:616 页
图书介绍:本书改编自David M.Pozar所著的Microwave Engineering,Third Edition一书,删除了原书中介绍铁氧体元件理论与设计的第9章,以及分析微波系统的第13章,因为这两章的内容介绍较为简单,且市面上有专著论述。第1章至第4章介绍了电磁场的基本理论和电路理论,第5章至第11章利用相关的概念阐明了各种微波电路和器件。在基本理论方面,本书介绍了经典的电磁场理论,叙述了现代微波工程中常用的分布电路和网络分析方法。在微波电路和器件方面,增加了平面结构元件和集成电路的设计、振荡器的相位噪声、晶体管功率放大器、非线性效应以及当今微波工程师经常使用的工具等内容。在每章结尾提供了习题,并在书末提供了部分习题的答案,可供教师选用和学生自测。为方便读者阅读,索引翻译成了中文,但只给出了对应的节号。

1 ELECTROMAGNETIC THEORY 1

1.1 Introduction to Microwave Engineering 1

Applications of Microwave Engineering 2

A Short History of Microwave Engineering 3

1.2 Maxwell’s Equations 5

1.3 Fields in Media and Boundary Conditions 9

Fields at a General Material Interface 11

Fields at a Dielectric Interface 13

Fields at the Interface with a Perfect Conductor (Electric Wall) 13

The Magnetic Wall Boundary Condition 14

The Radiation Condition 14

1.4 The Wave Equation and Basic Plane Wave Solutions 14

The Helmholtz Equation 14

Plane Waves in a Lossless Medium 15

Plane Waves in a General Lossy Medium 16

Plane Waves in a Good Conductor 18

1.5 General Plane Wave Solutions 19

Circularly Polarized Plane Waves 23

1.6 Energy and Power 24

Power Absorbed by a Good Conductor 26

1.7 Plane Wave Reflection from a Media Interface 27

General Medium 28

Lossless Medium 29

Good Conductor 30

Perfect Conductor 32

The Surface Impedance Concept 32

1.8 Oblique Incidence at a Dielectric Interface 34

Parallel Polarization 35

Perpendicular Polarization 36

Total Reflection and Surface Waves 38

1.9 Some Useful Theorems 40

The Reciprocity Theorem 40

Image Theory 42

2 TRANSMISSION LINE THEORY 49

2.1 The Lumped-Element Circuit Model for a Transmission Line 49

Wave Propagation on a Transmission Line 51

The Lossless Line 52

2.2 Field Analysis of Transmission Lines 52

Transmission Line Parameters 52

The Telegrapher Equations Derived from Field Analysis of a Coaxial Line 55

Propagation Constant,Impedance,and Power Flow for the Lossless Coaxial Line 57

2.3 The Terminated Lossless Transmission Line 57

Special Cases of Lossless Terminated Lines 60

2.4 The Smith Chart 64

The Combined Impedance-Admittance Smith Chart 68

The Slotted Line 69

2.5 The Quarter-Wave Transformer 73

The Impedance Viewpoint 73

The Multiple Reflection Viewpoint 75

2.6 Generator and Load Mismatches 77

Load Matched to Line 78

Generator Matched to Loaded Line 78

Conjugate Matching 78

2.7 Lossy Transmission Lines 79

The Low-Loss Line 79

The Distortionless Line 81

The Terminated Lossy Line 82

The Perturbation Method for Calculating Attenuation 83

The Wheeler Incremental Inductance Rule 84

3 TRANSMISSION LINES AND WAVEGUIDES 91

3.1 General Solutions for TEM,TE,and TM Waves 92

TEM Waves 94

TE Waves 96

TM Waves 96

Attenuation Due to Dielectric Loss 97

3.2 Parallel Plate Waveguide 98

TEM Modes 99

TM Modes 100

TE Modes 103

3.3 Rectangular Waveguide 106

TE Modes 106

TM Modes 111

TEm0 Modes of a Partially Loaded Waveguide 115

3.4 Circular Waveguide 117

TE Modes 118

TM Modes 121

3.5 Coaxial Line 126

TEM Modes 126

Higher Order Modes 127

3.6 Surface Waves on a Grounded Dielectric Slab 131

TM Modes 131

TE Modes 134

3.7 Stripline 137

Formulas for Propagation Constant,Characteristic Impedance,and Attenuation 138

An Approximate Electrostatic Solution 140

3.8 Microstrip 143

Formulas for Effective Dielectric Constant,Characteristic Impedance,and Attenuation 144

An Approximate Electrostatic Solution 146

3.9 The Transverse Resonance Technique 149

TE0n Modes of a Partially Loaded Rectangular Waveguide 150

3.10 Wave Velocities and Dispersion 151

Group Velocity 151

3.11 Summary of Transmission Lines and Waveguides 154

Other Types of Lines and Guides 154

4 MICROWAVE NETWORK ANALYSIS 161

4.1 Impedance and Equivalent Voltages and Currents 162

Equivalent Voltages and Currents 162

The Concept of Impedance 166

Even and Odd Properties of Z(ω) and Γ(ω) 169

4.2 Impedance and Admittance Matrices 170

Reciprocal Networks 171

Lossless Networks 173

4.3 The Scattering Matrix 174

Reciprocal Networks and Lossless Networks 177

A Shift in Reference Planes 180

Generalized Scattering Parameters 181

4.4 The Transmission (ABCD) Matrix 183

Relation to Impedance Matrix 185

Equivalent Circuits for Two-Port Networks 186

4.5 Signal Flow Graphs 189

Decomposition of Signal Flow Graphs 190

Application to TRL Network Analyzer Calibration 193

4.6 Discontinuities and Modal Analysis 197

Modal Analysis of an H-Plane Step in Rectangular Waveguide 199

4.7 Excitation of Waveguides—Electric and Magnetic Currents 204

Current Sheets That Excite Only One Waveguide Mode 204

Mode Excitation from an Arbitrary Electric or Magnetic Current Source 206

4.8 Excitation of Waveguides—Aperture Coupling 209

Coupling Through an Aperture in a Transverse Waveguide Wall 212

Coupling Through an Aperture in the Broad Wall of a Waveguide 214

5 IMPEDANCE MATCHING AND TUNING 222

5.1 Matching with Lumped Elements (L Networks) 223

Analytic Solutions 224

Smith Chart Solutions 225

5.2 Single-Stub Tuning 228

Shunt Stubs 228

Series Stubs 232

5.3 Double-Stub Tuning 235

Smith Chart Solution 235

Analytic Solution 238

5.4 The Quarter-Wave Transformer 240

5.5 The Theory of Small Reflections 244

Single-Section Transformer 244

Multisection Transformer 245

5.6 Binomial Multisection Matching Transformers 246

5.7 Chebyshev Multisection Matching Transformers 250

Chebyshev Polynomials 251

Design of Chebyshev Transformers 252

5.8 Tapered Lines 255

Exponential Taper 257

Triangular Taper 258

Klopfenstein Taper 258

5.9 The Bode-Fano Criterion 261

6 MICROWAVE RESONATORS 266

6.1 Series and Parallel Resonant Circuits 266

Series Resonant Circuit 266

Parallel Resonant Circuit 269

Loaded and Unloaded Q 271

6.2 Transmission Line Resonators 272

Short-Circuited λ /2 Line 272

Short-Circuited λ/4 Line 275

Open-Circuited λ/2 Line 276

6.3 Rectangular Waveguide Cavities 278

Resonant Frequencies 278

Q of the TE10e Mode 279

6.4 Circular Waveguide Cavities 282

Resonant Frequencies 282

Q of the TEnm e Mode 284

6.5 Dielectric Resonators 287

Resonant Frequencies of TE01δ Mode 287

6.6 Excitation of Resonators 291

Critical Coupling 291

A Gap-Coupled Microstrip Resonator 292

An Aperture-Coupled Cavity 296

6.7 Cavity Perturbations 298

Material Perturbations 298

Shape Perturbations 300

7 POWER DIVIDERS AND DIRECTIONAL COUPLERS 308

7.1 Basic Properties of Dividers and Couplers 308

Three-Port Networks (T- Junctions) 309

Four-Port Networks (Directional Couplers) 311

7.2 The T -Junction Power Divider 315

Lossless Divider 316

Resistive Divider 317

7.3 The Wilkinson Power Divider 318

Even-Odd Mode Analysis 319

Unequal Power Division and N-Way Wilkinson Dividers 322

7.4 Waveguide Directional Couplers 323

Bethe Hole Coupler 324

Design of Multihole Couplers 327

7.5 The Quadrature (90°) Hybrid 333

Even-Odd Mode Analysis 333

7.6 Coupled Line Directional Couplers 337

Coupled Line Theory 337

Design of Coupled Line Couplers 341

Design of Multisection Coupled Line Couplers 345

7.7 The Lange Coupler 349

7.8 The 180° Hybrid 352

Even-Odd Mode Analysis of the Ring Hybrid 354

Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid 357

Waveguide Magic-T 361

7.9 Other Couplers 361

8 MICROWAVE FILTERS 370

8.1 Periodic Structures 371

Analysis of Infinite Periodic Structures 372

Terminated Periodic Structures 374

k-β Diagrams and Wave Velocities 375

8.2 Filter Design by the Image Parameter Method 378

Image Impedances and Transfer Functions for Two-Port Networks 378

Constant-k Filter Sections 380

m-Derived Filter Sections 383

Composite Filters 386

8.3 Filter Design by the Insertion Loss Method 389

Characterization by Power Loss Ratio 389

Maximally Flat Low-Pass Filter Prototype 392

Equal-Ripple Low-Pass Filter Prototype 394

Linear Phase Low-Pass Filter Prototypes 396

8.4 Filter Transformations 398

Impedance and Frequency Scaling 398

Bandpass and Bandstop Transformations 401

8.5 Filter Implementation 405

Richard’s Transformation 406

Kuroda’s Identities 406

Impedance and Admittance Inverters 411

8.6 Stepped-Impedance Low-Pass Filters 412

Approximate Equivalent Circuits for Short Transmission Line Sections 412

8.7 Coupled Line Filters 416

Filter Properties of a Coupled Line Section 416

Design of Coupled Line Bandpass Filters 420

8.8 Filters Using Coupled Resonators 427

Bandstop and Bandpass Filters Using Quarter-Wave Resonators 427

Bandpass Filters Using Capacitively Coupled Series Resonators 431

Bandpass Filters Using Capacitively Coupled Shunt Resonators 433

9 NOISE AND ACTIVE RF COMPONENTS 441

9.1 Noise in Microwave Circuits 442

Dynamic Range and Sources of Noise 442

Noise Power and Equivalent Noise Temperature 444

Measurement of Noise Temperature 447

Noise Figure 448

Noise Figure of a Cascaded System 450

Noise Figure of a Passive Two-Port Network 452

Noise Figure of a Mismatched Lossy Line 453

9.2 Dynamic Range and Intermodulation Distortion 455

Gain Compression 456

Intermodulation Distortion 457

Third-Order Intercept Point 459

Dynamic Range 460

Intercept Point of a Cascaded System 462

Passive Intermodulation 464

9.3 RF Diode Characteristics 464

Schottky Diodes and Detectors 464

PIN Diodes and Control Circuits 469

Varactor Diodes 475

Other Diodes 476

9.4 RF Transistor Characteristics 477

Field Effect Transistors (FETs) 478

Bipolar Junction Transistors (BJTs) 480

9.5 Microwave Integrated Circuits 481

Hybrid Microwave Integrated Circuits 482

Monolithic Microwave Integrated Circuits 483

10 MICROWAVE AMPLIFIER DESIGN 491

10.1 Two-Port Power Gains 491

Definitions of Two-Port Power Gains 492

Further Discussion of Two-Port Power Gains 495

10.2 Stability 497

Stability Circles 498

Tests for Unconditional Stability 500

10.3 Single-Stage Transistor Amplifier Design 503

Design for Maximum Gain (Conjugate Matching) 503

Constant Gain Circles and Design for Specified Gain 508

Low-Noise Amplifier Design 512

10.4 Broadband Transistor Amplifier Design 516

Balanced Amplifiers 517

Distributed Amplifiers 520

10.5 Power Amplifiers 525

Characteristics of Power Amplifiers and Amplifier Classes 525

Large-Signal Characterization of Transistors 526

Design of Class A Power Amplifiers 527

11 OSCILLATORS AND MIXERS 532

11.1 RF Oscillators 533

General Analysis 533

Oscillators Using a Common Emitter BJT 534

Oscillators Using a Common Gate FET 536

Practical Considerations 537

Crystal Oscillators 539

11.2 Microwave Oscillators 540

Transistor Oscillators 542

Dielectric Resonator Oscillators 545

11.3 Oscillator Phase Noise 549

Representation of Phase Noise 549

Leeson’s Model for Oscillator Phase Noise 550

11.4 Frequency Multipliers 554

Reactive Diode Multipliers (Manley-Rowe Relations) 555

Resistive Diode Multipliers 557

Transistor Multipliers 559

11.5 Overview of Microwave Sources 563

Solid-State Sources 564

Microwave Tubes 567

11.6 Mixers 570

Mixer Characteristics 571

Single-Ended Diode Mixer 575

Single-Ended FET Mixer 577

Balanced Mixer 580

Image Reject Mixer 582

Other Mixers 584

APPENDICES 588

A Prefixes 589

B Vector Analysis 589

C Bessel Functions 591

D Other Mathematical Results 594

E Physical Constants 594

F Conductivities for Some Materials 595

G Dielectric Constants and Loss Tangents for Some Materials 595

H Properties of Some Microwave Ferrite Materials 596

I Standard Rectangular Waveguide Data 596

J Standard Coaxial Cable Data 597

ANSWERS TO SELECTED PROBLEMS 598

USEFUL RESULTS 600

VECTOR ANALYSIS 602

INDEX 604