1 Introduction 1
1.1 Atmospheric Flight Mechanics 1
1.2 Basic Definitions 3
1.3 Aerostatics 7
1.4 Development of Bernoulli’s Equation 9
1.5 The Atmosphere 12
1.6 Aerodynamic Nomenclature 19
1.7 Aircraft Instruments 22
1.8 Summary 32
Problems 32
References 33
2 Static Stability and Control 35
2.1 Historical Perspective 35
2.2 Introduction 39
2.3 Static Stability and Control 42
2.4 Longitudinal Control 62
2.5 Stick Forces 70
2.6 Definition of Directional Stability 73
2.7 Directional Control 77
2.8 Roll Stability 78
2.9 Roll Control 81
2.10 Summary 84
Problems 85
References 95
3 Aircraft Equations of Motion 96
3.1 Introduction 96
3.2 Derivation of Rigid Body Equations of Motion 97
3.3 Orientation and Position of the Airplane 101
3.4 Gravitational and Thrust Forces 103
3.5 Small-Disturbance Theory 104
3.6 Aerodynamic Force and Moment Representation 108
3.7 Summary 127
Problems 128
References 130
4 Longitudinal Motion (Stick Fixed) 131
4.1 Historical Perspective 131
4.2 Second-Order Differential Equations 133
4.3 Pure Pitching Motion 139
4.4 Stick Fixed Longitudinal Motion 147
4.5 Longitudinal Approximations 152
4.6 The Influence of Stability Derivatives on the Longitudinal Modes of Motion 162
4.7 Flying Qualities 164
4.8 Flight Simulation 169
4.9 Summary 171
Problems 174
References 179
5 Lateral Motion (Stick Fixed) 181
5.1 Introduction 181
5.2 Pure Rolling Motion 182
5.3 Pure Yawing Motion 188
5.4 Lateral-Directional Equations of Motion 193
5.5 Lateral Flying Qualities 203
5.6 Inertial Coupling 205
5.7 Summary 206
Problems 206
References 210
6 Aircraft Response to Control or Atmospheric Inputs 212
6.1 Introduction 212
6.2 Equations of Motion in a Nonuniform Atmosphere 215
6.3 Pure Vertical or Plunging Motion 218
6.4 Atmospheric Turbulence 225
6.5 Harmonic Analysis 227
6.6 Wind Shear 229
6.7 Summary 232
Problems 233
References 234
7 Automatic Control Theory—The Classical Approach 235
7.1 Introduction 235
7.2 Routh’s Criterion 238
7.3 Root Locus Technique 243
7.4 Frequency Domain Techniques 250
7.5 Time-Domain and Frequency-Domain Specifications 251
7.6 Steady-State Error 258
7.7 Control System Design 262
7.8 PID Controller 271
7.9 Summary 274
Problems 275
References 280
8 Application of Classical Control Theory to Aircraft Autopilot Design 281
8.1 Introduction 281
8.2 Aircraft Transfer Functions 283
8.3 Control Surface Actuator 288
8.4 Displacement Autopilot 292
8.5 Stability Augmentation 312
8.6 Instrument Landing 314
8.7 Summary 318
Problems 319
References 322
9 Modern Control Theory 323
9.1 Introduction 323
9.2 State-Space Modeling 324
9.3 Canonical Transformations 335
9.4 Controllability and Observability 344
9.5 State Feedback Design 347
9.6 State Variable Reconstruction:The State Observer 355
9.7 Optimal State-Space Control System Design 359
9.8 Summary 362
Problems 362
References 366
10 Application of Modern Control Theory to Aircraft Autopilot Design 367
10.1 Introduction 367
10.2 Stability Augmentation 367
10.3 Autopilot Design 379
10.4 State Observer 383
10.5 Optimal Control 386
10.6 Summary 391
Problems 391
References 394
Appendices 395
A Atmospheric Tables (ICAO Standard Atmosphere) 395
B Geometric,Mass,and Aerodynamic Characteristics of Selected Airplanes 398
C Mathematical Review of Laplace Transforms and Matrix Algebra 420
D Review of Control System Analysis Techniques 429
Index 435