《Optical electronics in modern communications = 现代通信光电子学 (第五版) (英文版)》PDF下载

  • 购买积分:20 如何计算积分?
  • 作  者:Amnon Yariv
  • 出 版 社:Pub. House of Electronics Industry
  • 出版年份:2002
  • ISBN:7505379593
  • 页数:746 页
图书介绍:本书是光电子学领域权威著作,是《光电子学》的最新版本,即第五版,本版反映了光电子学领域的最新进展。本书主要介绍了激光物理学领域各种现象和所有器件的最基本原理,尤其突出了各种激光器在光纤通信中的应用,同时本书还附有大量习题和实例。该版本新增加的内容包括:光纤中脉冲的色散和窄化,半导体激光器的高速调制,垂直表面发射激光器,量子光学,全息数据存储,光纤光栅,DFB激光器等。>读者对象>本书既可以作为高等院校光电专业核心教材,也可以作为从事实际工作的工程师们的参考用书。>作者简介>AmnonYariv:加州理工学院电子工程系和应用物理系教授,光电子学的创始人之一,美国国家工程院和国家科学院院士,ORTEL公司的创始人之一和董事会主席。在他的指导下,Caltech已成为光波电子学领域中最富有成果和创造性的研究小组。

Chapter 1 ELECTROMAGNETIC THEORY 1

1.0 Introduction 1

1.1 Complex-Function Formalism 1

Time-Averaging of Sinusoidal Products 3

1.2 Considerations of Energy and Power in Electromagnetic Fields 3

Dipolar Dissipation in Harmonic Fields 5

1.3 Wave Propagation in Isotropic Media 7

Power Flow in Harmonic Fields 10

1.4 Wave Propagation in Crystals—The Index Ellipsoid 12

Birefringence 13

Index Ellipsoid 14

Normal (index) Surfaces 17

1.5 Jones Calculus and Its Application to Propagation in Optical Systems with Birefringent Crystals 17

Intensity Transmission 24

Circular Polarization Representation 26

Faraday Rotation 27

1.6 Diffraction of Electromagnetic Waves 30

PROBLEMS 34

REFERENCES 38

Chapter 2 THE PROPAGATION OF RAYS AND BEAMS 39

2.0 Introduction 39

2.1 Lens Waveguide 39

Identical-Lens Waveguide 44

2.2 Propagation of Rays Between Mirrors 45

Reentrant Rays 45

2.3 Rays in Lenslike Media 46

2.4 Wave Equation in Quadratic Index Media 48

2.5 Gaussian Beams in a Homogeneous Medium 50

2.6 Fundamental Gaussian Beam in a Lenslike Medium—The ABCD Law 53

Transformation of the Gaussian Beam—The ABCD Law 54

2.7 A Gaussian Beam in Lens Waveguide 57

2.8 High-Order Gaussian Beam Modes in a Homogeneous Medium 57

2.9 High-Order Gaussian Beam Modes in Quadratic Index Media 58

Pulse Spreading in Quadratic Index Glass Fibers 63

2.10 Propagation in Media with a Quadratic Gain Profile 65

2.11 Elliptic Gaussian Beams 66

Elliptic Gaussian Beams in a Quadratic Lenslike Medium 69

2.12 Diffraction Integral for a Generalized Paraxial A,B,C,D System 70

PROBLEMS 72

REFERENCES 74

Chapter 3 PROPAGATION OF OPTICAL BEAMS IN FIBERS 76

3.0 Introduction 76

3.1 Wave Equations in Cylindrical Coordinates 77

3.2 The Step-Index Circular Waveguide 80

Mode Characteristics and Cutoff Conditions 83

3.3 Linearly Polarized Modes 89

Power Flow and Power Density 96

3.4 Optical Pulse Propagation and Pulse Spreading in Fibers 98

Frequency Chirp 105

3.5 Compensation for Group Velocity Dispersion 106

Compensation for Pulse Broadening by Fibers with Opposite Dispersion 108

Compensation for Pulse Broadening by Phase Conjugation 108

3.6 Analogy of Spatial Diffraction and Temporal Dispersion 113

3.7 Attenuation in Silica Fibers 115

PROBLEMS 116

REFERENCES 119

Chapter 4 OPTICAL RESONATORS 121

4.0 Introduction 121

Mode Density in Optical Resonators 122

4.1 Fabry-Perot Etalon 125

4.2 Fabry-Perot Etalons as Optical Spectrum Analyzers 129

4.3 Optical Resonators with Spherical Mirrors 132

Optical Resonator Algebra 133

The Symmetrical Mirror Resonator 134

4.4 Mode Stability Criteria 135

4.5 Modes in a Generalized Resonator—The Self-Consistent Method 138

Stability of the Resonator Modes 139

4.6 Resonance Frequencies of Optical Resonators 140

4.7 Losses in Optical Resonators 143

4.8 Optical Resonators—Diffraction Theory Approach 145

Equivalent Resonator Systems 149

4.9 Mode Coupling 154

Equivalent Resonator Systems 149

Mode Solution by Numerical Iteration 151

PROBLEMS 156

REFERENCES 158

Chapter 5 INTERACTION OF RADIATION AND ATOMIC SYSTEMS 159

5.0 Introduction 159

5.1 Spontaneous Transitions Between Atomic Levels—Homogeneous and Inhomogeneous Broadening 159

The Concept of Spontaneous Emission 160

Lineshape Function—Homogeneous and Inhomogeneous Broadening 161

Homogeneous and Inhomogeneous Broadening 162

5.2 Induced Transitions 165

5.3 Absorption and Amplification 168

5.4 Derivation of X′(v) 171

5.5 The Significance of X(v) 174

5.6 Gain Saturation in Homogeneous Laser Media 176

5.7 Gain Saturation in Inhomogeneous Laser Media 179

PROBLEMS 182

REFERENCES 183

Chapter 6 THEORY OF LASER OSCILLATION AND ITS CONTROL IN THE CONTINUOUS AND PULSED REGIMES 185

6.0 Introduction 185

6.1 Fabry-Perot Laser 185

6.2 Oscillation Frequency 189

6.3 Three- and Four-Level Lasers 192

6.4 Power in Laser Oscillators 194

Rate Equations 194

6.5 Optimum Output Coupling in Laser Oscillators 197

6.6 Multimode Laser Oscillation and Mode Locking 201

Mode Locking 203

Methods of Mode Locking 206

Theory of Mode Locking 210

6.7 Mode Locking in Homogeneously Broadened Laser Systems 212

Transfer Function of the Gain Medium 213

Transfer Function of the Loss Cell 213

Mode Locking by Phase Modulation 217

6.8 Pulse Length Measurement and Narrowing of Chirped Pulses 218

Pulse Narrowing by Chirping and Compression 222

The Grating Pair Compressor 226

6.9 Giant Pulse (Q-switched) Lasers 227

Methods of Q-Switching 233

6.10 Hole-Burning and the Lamb Dip in Doppler-Broadened Gas Lasers 235

PROBLEMS 238

REFERENCES 239

Chapter 7 SOME SPECIFIC LASER SYSTEMS 242

7.0 Introduction 242

7.1 Pumping and Laser Efficiency 242

7.2 Ruby Laser 243

7.3 Nd3+:YAG Laser 248

7.4 Neodymium-Glass Laser 251

7.5 He-Ne Laser 255

7.6 Carbon Dioxide Laser 257

7.7 Ar+ Laser 259

7.8 Excimer Lasers 260

7.9 Organic-Dye Lasers 262

7.10 High-Pressure Operation of Gas Lasers 267

7.11 The Er-Silica Laser 270

PROBLEMS 270

REFERENCES 270

Chapter 8 SECOND-HARMONIC GENERATION AND PARAMETRIC OSCILLATION 273

8.0 Introduction 273

8.1 On the Physical Origin of Nonlinear Polarization 273

8.2 Formalism of Wave Propagation in Nonlinear Media 282

8.3 Optical Second-Harmonic Generation 285

Phase-Matching in Second-Harmonic Generation 286

Experimental Verification of Phase-Matching 290

Second-Harmonic Generation with Focused Gaussian Beams 291

Second-Harmonic Generation with a Depleted Input 293

8.4 Second-Harmonic Generation Inside the Laser Resonator 295

8.5 Photon Model of Second-Harmonic Generation 299

8.6 Parametric Amplification 300

8.7 Phase-Matching in Parametric Amplification 306

8.8 Parametric Oscillation 308

8.9 Frequency Tuning in Parametric Oscillation 311

8.10 Power Output and Pump Saturation in Optical Parametric Oscillators 314

8.11 Frequency Up-Conversion 316

8.12 Quasi Phase-Matching 319

Quasi Phase-Matchingin Crystal Dielectric Waveguides 320

PROBLEMS 322

REFERENCES 323

Chapter 9 ELECTROOPTIC MODULATION OF LASER BEAMS 326

9.0 Introduction 326

9.1 Electrooptic Effect 326

The General Solution 333

9.2 Electrooptic Retardation 341

9.3 Electrooptic Amplitude Modulation 344

9.4 Phase Modulation of Light 347

9.5 Transverse Electrooptic Modulators 348

9.6 High-Frequency Modulation Considerations 349

Transit-Time Limitations to High-Frequency Electrooptic Modulation 350

Traveling-Wave Modulators 351

9.7 Electrooptic Beam Deflection 353

9.8 Electrooptic Modulation—Coupled Wave Analysis 356

The Wave Equation 358

9.9 Phase Modulation 360

Amplitude Modulation (advanced topic) 364

PROBLEMS 367

REFERENCES 370

Chapter 10 NOISE IN OPTICAL DETECTION AND GENERATION 372

10.0 Introduction 372

10.1 Limitations Due to Noise Power 373

Measurement of Optical Power 373

10.2 Noise—Basic Definitions and Theorems 376

Wiener-Khintchine Theorem 378

10.3 The Spectral Density Function of a Train of Randomly Occurring Events 379

10.4 Shot Noise 381

10.5 Johnson Noise 383

Statistical Derivation of Johnson Noise 386

10.6 Spontaneous Emission Noise in Laser Oscillators 388

10.7 Phasor Derivation of the Laser Linewidth 393

The Phase Noise 393

The Laser Field Spectrum 396

10.8 Coherence and Interference 401

Delayed Self-Heterodyning of Laser Fields 404

Special Case td?Tc 406

10.9 Error Probability in a Binary Pulse Code Modulation System 407

PROBLEMS 410

REFERENCES 411

Chapter 11 DETECTION OF OPTICAL RADIATION 413

11.0 Introduction 413

11.1 Optically Induced Transition Rates 414

11.2 Photomultiplier 415

11.3 Noise Mechanisms in Photomultipliers 417

Mimimum Detectable Power in Photomultipliers—Video Detection 418

Signal-Limited Shot Noise 420

11.4 Heterodyne Detection with Photomultipliers 421

Limiting Sensitivity as a Result of the Particle Nature of Light 423

11.5 Photoconductive Detectors 425

Generation Recombination Noise in Photoconductive Detectors 428

Heterodyne Detection in Photoconductors 430

11.6 The p-n Junction 432

11.7 Semiconductor Photodiodes 436

Frequency Response of Photodiodes 438

Detection Sensitivity of Photodiodes 443

11.8 The Avalanche Photodiode 446

11.9 Power Fluctuation Noise in Lasers 449

11.10 Infrared Imaging and Background-Limited Detection 454

11.11 Optical Amplification in Fiber Links 461

PROBLEMS 470

REFERENCES 471

Chapter 12 INTERACTION OF LIGHT AND SOUND 474

12.0 Introduction 474

12.1 Scattering of Light by Sound 474

12.2 Particle Picture of Bragg Diffraction of Light by Sound 477

Doppler Derivation of the Frequency Shift 478

12.3 Bragg Diffraction of Light by Acoustic Waves—Analysis 479

12.4 Deflection of Light by Sound 486

PROBLEMS 489

REFERENCES 490

Chapter 13 PROPAGATION AND COUPLING OF MODES IN OPTICAL DIELECTRIC WAVEGUIDES—PERIODIC WAVEGUIDES 491

13.0 Introduction 491

13.1 Waveguide Modes—A General Discussion 492

Confined Modes in a Symmetric Slab Waveguide 494

13.2 TE and TM Modes in an Asymmetric Slab Waveguide 499

TE Modes 499

TM Modes 501

13.3 A Perturbation Theory of Coupled Modes in Dielectric Optical Waveguides 502

13.4 Periodic Waveguide 504

Some General Properties of the Coupled Mode Equations 506

13.5 Coupled-Mode Solutions 509

Numerical Example 512

13.6 Periodic Waveguides as Optical Filters and Reflectors—Periodic Fibers 512

13.7 Electrooptic Modulation and Mode Coupling in Dielectric Waveguides 515

13.8 Directional Coupling 521

13.9 The Eigenmodes of a Coupled Waveguide System (supermodes) 526

13.10 Laser Arrays 531

PROBLEMS 538

REFERENCES 539

Chapter 14 HOLOGRAPHY AND OPTICAL DATA STORAGE 541

14.0 Introduction 541

14.1 The Mathematical Basis of Holography 542

The Holographic Process Viewed as Bragg Diffraction 542

Basic Holography Formalism 545

14.2 The Coupled Wave Analysis of Volume Holograms 546

Multihologram Recording and Readout—Crosstalk 549

Wavelength Multiplexing 552

Crosstalk in Data-Bearing Holograms 552

PROBLEMS 556

REFERENCES 557

Chapter 15 SEMICONDUCTOR LASERS—THEORY AND APPLICATIONS 558

15.0 Introduction 558

15.1 Some Semiconductor Physics Background 559

The Fermi-Dirac Distribution Law 562

15.2 Gain and Absorption in Semiconductor (laser) Media 565

15.3 GaAs/Ga1—xA1xAs Lasers 570

15.4 Some Real Laser Structures 577

Quaternary GaInAsP Semiconductor Lasers 578

Power Output of Injection Lasers 581

15.5 Direct-Current Modulation of Semiconductor Lasers 582

15.6 Gain Suppression and Frequency Chirp in Current-Modulated Semiconductor Lasers 587

Amplitude-phase coupling 592

The Field Spectrum of a Chirping Laser 594

15.7 Integrated Optoelectronics 596

PROBLEMS 599

REFERENCES 601

Chapter 16 ADVANCED SEMICONDUCTOR LASERS:QUANTUM WELL LASERS,DISTRIBUTED FEEDBACK LASERS,VERTICAL CAVITY SURFACE EMITTING LASERS 604

16.0 Introduction 604

16.1 Carriers in Quantum Wells (Advanced Topic) 605

The Density of States 608

16.2 Gain in Quantum Well Lasers 610

Multiquantum Well Laser 614

16.3 Distributed Feedback Lasers 616

Oscillation Condition 619

Gain-Coupled Distributed Feedback Lasers 626

16.4 Vertical Cavity Surface Emitting Semiconductor Lasers 628

The Oscillation Condition of a Vertical Cavity Laser 630

The Bragg Mirror 631

The Oscillation Frequencies 633

PROBLEMS 636

REFERENCES 637

Chapter 17 PHASE CONJUGATE OPTICS—THEORY AND APPLICATIONS 639

17.0 Introduction and Background 639

17.1 The Distortion Correction Theorem 640

17.2 The Generation of Phase Conjugate Waves 641

17.3 The Coupled-Mode Formulation of Phase Conjugate Optics 643

Some Consideration of Units 648

17.4 Some Experiments Involving Phase Conjugation 649

17.5 Optical Resonators with Phase Conjugate Reflectors 651

17.6 The ABCD Formalism of Phase Conjugate Optical Resonators 653

The ABCD Matrix of a Phase Conjugate Mirror 653

17.7 Dynamic Distortion Correction Within a Laser Resonator 655

17.8 Holographic Analogs of Phase Conjugate Optics 657

17.9 Imaging Through a Distorted Medium 659

17.10 Image Processing by Four-Wave Mixing 661

17.11 Compensation of Fiber Dispersion 665

PROBLEMS 665

REFERENCES 665

Chapter 18 TWO-BEAM COUPLING AND PHASE CONJUGATION IN PHOTOREFRACTIVE MEDIA 668

18.0 Introduction 668

18.1 Two-Wave Coupling in a Fixed Grating 669

18.2 The Photorefractive Effect—Two Beam Coupling 671

The Grating Formation 680

Refractive Two-Beam Coupling 681

Two-Beam Coupling—Symmetric Geometry 683

18.3 Photorefractive Self-Pumped Phase Conjugation 684

18.4 Applications of Photorefractive Oscillators 686

Rotation Sensing 686

Mathematical and Logic Operations of Images 688

PROBLEMS 691

REFERENCES 691

Chapter 19 OPTICAL SOLITONS 693

19.0 Introduction 693

19.1 The Mathematical Description of Solitons 693

The Wave Equation 695

Numerical Example—Optical Solitons in Silica Fibers 699

PROBLEMS 700

REFERENCES 701

Chapter 20 A CLASSICAL TREATMENT OF QUANTUM OPTICS,QUANTUM NOISE,AND SQUEEZING 703

20.0 Introduction 703

20.1 The Quantum Uncertainty Goes Classical 703

The Uncertainty Principle 704

The Energy of an Electromagnetic Mode 709

Uncertainty in Energy 709

Phase Uncertainty 710

Fluctuation of Photoelectron Number 710

Minimum Detectable Optical Power Increment 711

20.2 Squeezing of Optical Fields 712

Experimental Demonstrations of Squeezing 716

REFERENCES 721

Appendix A THE KRAMERS-KRONIG RELATIONS 723

Appendix B THE ELECTROOPTIC EFFECT IN CUBIC 43m CRYSTALS 726

Appendix C NOISE IN TRAVELING WAVE LASER AMPLIFIERS 730

Appendix D TRANSFORMATION OF A COHERENT ELECTROMAGNETIC FIELD BY A THIN LENS 734

Index 737