CHAPTER 1 INTRODUCTION 1
1.1 REVIEW AND PERSPECTIVE 1
1.2 MATERIALS SCIENCE AND ENGINEERING 2
1.3 CLASSIFICATION OF MATERIALS 3
1.3.1 Metals 3
1.3.2 Ceramics 4
1.3.3 Polymers 4
1.3.4 Composites 4
1.4 MODERN MATERIALS NEEDS 4
1.5 THE SELECTION OF MATERIAL 5
1.5.1 Service Requirements 5
1.5.2 Fabrication Requirements 6
1.5.3 Economic Requirements 6
1.5.4 The Materials that are Available to the Engineer 8
CHAPTER 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING 8
2.1 THE STRUCTURE OF ATOMS 9
2.2 ATOMIC NUMBERS AND ATOMIC MASSES 10
2.2.1 Atomic Numbers 10
2.2.2 Atomic Masses 10
2.3 THE ELECTRONIC STRUCTURE OF ATOMS 11
2.3.1 The Hydrogen Atom 11
2.3.2 Quantum Numbers of Election of Atoms 13
2.3.3 Electronic Structure of Multi-electron Atoms 15
2.3.4 Electronic Structure and Chemical Reactivity 19
2.4 TYPES OF ATOMIC AND MOLECULAR BONDS 20
2.4.1 Ionic Bonding 21
2.4.2 Covalent Bonding 26
2.4.3 Metallic Bonding 29
2.4.4 Secondary Bonding 32
2.4.5 Mixed Bonding 32
CHAPTER 3 CRYSTAL STRUCTURE 35
3.1 FUNDAMENTAL CONCEPTS 35
3.1.1 The Space Lattice and Unit Cells 35
3.1.2 Crystal Systems and Bravais Lattice 35
3.1.3 Crystallographic Directions and Miller Indies 37
3.2 PRINCIPAL METALLIC CRYSTAL STRUCTURES 45
3.2.1 Body-Centered Cubic(BCC) Crystal Structure 46
3.2.2 Face-Centered Cubic(FCC) Crystal Structure 49
3.2.3 Hexagonal Close-Packed(HCP) Crystal Structure 50
3.2.4 Comparison of FCC,HCP,and BCC Crystal Structures 52
3.2.5 Volume,Planar and Linear Density Unit-Cell Calculations 54
3.2.6 Polymorphism or Allotropy 57
CHAPTER 4 SOLIDIFICATION,CRYSTALLINE IMPERFECTIONS,AND DIFFUSION IN SOLIDS 57
4.1 SOLIDIFICATION OF METALS 59
4.1.1 The Formation of Stable Nuclei in Liquid Metals 60
4.1.2 Homogeneous Nucleation 60
4.1.3 Critical Radius vs. Undercooling 62
4.1.4 Heterogeneous Nucleation 62
4.2 GROWTH OF CRYSTALS 63
4.2.1 Growth of Crystals in Liquid Metal and Formation of a Grain Structure 63
4.2.2 Solidification of Single Crystals 64
4.2.3 Metallic Solid Solutions 65
4.3 CRYSTALLINE IMPERFECTIONS 69
4.3.1 Point Defects 70
4.3.2 Line Defects(Dislocations) 71
4.3.3 Planar Defects(Grain Boundaries) 73
4.4 ATOMIC DIFFUSION IN SOLIDS 74
4.4.1 Diffusion Mechanisms 74
4.4.2 Steady-State Diffusion 76
4.4.3 Non-Steady-State Diffusion 78
4.4.4 Industrial Applications of Diffusion Processes 80
4.4.5 Effect of Temperature on Diffusion in Solids 82
CHAPTER 5 PHASE DIAGRAMS 85
5.1 PHASE DIAGRAMS OF PURE SUBSTANCES 85
5.2 GIBBS PHASE RULE 86
5.3 BINARY ISOMORPHOUS ALLOY SYSTEMS 87
5.4 THE LEVER RULE 90
5.5 NONEQUILIBRIUM SOLIDIFICATION OF ALLOYS 92
5.6 BINARY EUTECTIC ALLOY SYSTEMS 94
5.7 BINARY PERITECTIC ALLOY SYSTEMS 97
5.8 BINARY MONOTECTIC SYSTEMS 101
5.9 INVARIANT REACTIONS 102
5.10 PHASE DIAGRAMS WITH INTERMEDIATE PHASE AND COMPOUNDS 103
5.10.1 Phase Diagrams with Intermediate Phase 103
5.10.2 Intermediate Compounds 105
5.11 TERNARY PHASE DIAGRAMS 106
CHAPTER 6 IRON-IRON CARBIDE PHASE DIAGRAM AND MICROSTRUCTURE 106
6.1 IRON-IRON CARBIDE PHASE DIAGRAM 108
6.1.1 The Iron-Iron Carbide Phase Diagram 108
6.1.2 Slow Cooling of Plain-Carbon Steels 110
6.2 MARTENSITE-TRANSFORMATION 114
6.2.1 Martensite 114
6.2.2 Microstructure of Fe-C Martensites 115
6.2.3 Crystal Structure of Martensites 116
6.2.4 Hardness and Strength of Fe-C Martensites 117
6.3 ISOTHERMAL DECOMPOSITION OF AUSTENITE 118
6.4 CONTINUOUS-COOLING TRANSFORMATION DIAGRAM FOR A EUTECTOID PLAIN-CARBON STEEL 121
6.5 MICROSTRUCTURAL CHANGES IN MARTENSITE UPON THERMAL PROCESSING 124
6.5.1 The Tempering Process 124
6.5.2 Effect of Tempering Temperature on Hardness of Plain-Carbon Steels 125
6.6 FERROUS ALLOYS 128
6.6.1 Steels 129
6.6.2 Cast Irons 136
6.7 NONFERROUS ALLOYS 141
6.7.1 Copper and Its Alloys 141
6.7.2 Aluminum and Its Alloys 143
6.7.3 Magnesium and Its Alloys 144
6.7.4 Titanium and Its Alloys 146
6.7.5 The Refractory Metals 146
6.7.6 The Superalloys 147
6.7.7 The Noble Metals 147
6.7.8 Miscellaneous Nonferrous Alloys 147
CHAPTER 7 POLYMERIC MATERIALS 149
7.1 BASIC CONCEPTS 149
7.1.1 Polymer Molecules 149
7.1.2 The Chemistry of Polymer Molecules 149
7.1.3 Molecular Weight 152
7.1.4 Molecular Shape 155
7.2 MOLECULAR CONFIGURATIONS 156
7.2.1 Molecular Configurations 156
7.2.2 Structure 158
7.2.3 Copolymers 159
7.3 POLYMER PROCESSING 160
7.3.1 Addition Polymerization 161
7.3.2 Condensation Polymerization 162
7.4 POLYMER TYPES 163
7.4.1 To Divide Class on Constitution of Chemical Main-Chains 163
7.4.2 To Divide Class on Thermo-Behavior 164
7.4.3 To Divide Class on Properties and Applications 164
7.5 PHYSICAL NATURE AND PROPERTIES OF POLYMERS 165
7.5.1 Three States of Polymers 165
7.5.2 Basic Properties of Polymers 169
CHAPTER 8 CERAMIC MATERIALS 179
8.1 CERAMIC CRYSTAL STRUCTURES 179
8.1.1 Ionic and Covalent Bonding in Ceramic Compounds 179
8.1.2 Structures of Ionic Crystal 179
8.1.3 Cesium Chloride(CsCl)Crystal Structure 182
8.1.4 Sodium Chloride(NaCl)Crystal Structure 183
8.1.5 Interstitial Sites in FCC and HCP Crystal Lattices 184
8.1.6 Zinc Blende(ZnS)Crystal Structure 185
8.1.7 Calcium Fluoride(CaF2)Crystal Structure 186
8.1.8 Antifluorite Crystal Structure 186
8.1.9 Corundum(Al2O3)Crystal Structure 186
8.1.10 Perovskite(CaTiO3)Crystal Structure 187
8.1.11 Spinel(MgAl2O4)Crystal Structure 187
8.1.12 Graphite 187
8.2 SILICATE STRUCTURES 188
8.2.1 Basic Structure Unit of the Silicate Structure 188
8.2.2 Island,Chain,and Ring Structure of Silicate 189
8.2.3 Sheet Structure of Silicates 189
8.2.4 Silicate Networks 190
8.3 PROCESSING OF CERAMICS 191
8.3.1 Sintering 191
8.3.2 Vitrification 191
8.4 TRADITIONAL AND TECHNICAL CERAMICS 192
8.4.1 Traditional Ceramic 192
8.4.2 Technical Ceramics 193
8.5 MECHANICAL PROPERTIES OF CERAMIC MATERIALS 194
8.5.1 Mechanisms for the Deformation of Ceramic Materials 194
8.5.2 Factors Affecting the Strength of Ceramics Materials 195
8.5.3 Brittle Fracture of Ceramic 196
8.6 THERMAL PROPERTIES OF CERAMICS 198
8.7 ELECTRICAL PROPERTIES OF CERAMICS 198
8.7.1 Ceramic Insulator Materials 199
8.7.2 Ceramic Materials for Capacitors 200
8.7.3 Ceramic Semiconductor 201
8.7.4 Ferroelectric Ceramics and Piezoelectric Ceramics 201
CHAPTER 9 MECHANICAL PROPERTIES OF METALS 201
9.1 STRESS AND STRAIN IN METALS 205
9.1.1 Elastic and Plastic Deformation 205
9.1.2 Engineering Stress and Engineering Strain 205
9.1.3 Shear Stress and Shear Strain 208
9.2 THE TENSILE TEST AND THE ENGINEERING STRESS-STRAIN DIAGRAM 209
9.2.1 Mechanical Property Data Obtained from the Tensile Test and the Engineering Stress-Strain Diagram 210
9.2.2 True Stress and Strain 214
9.3 PLASTIC DEFORMATION OF METAL SINGLE CRYSTALS 217
9.3.1 Slipbands and Slip Lines on the Surface of Metal Crystals 217
9.3.2 Plastic Deformation in Metal Crystals by the Slip Mechanism 218
9.3.3 Slip System 220
9.3.4 Critical Resolved Shear Stress for Metal Single Crystals 222
9.3.5 Twinning 223
9.4 PLASTIC DEFORMATION OF POLYCRYSTALLINE METALS 225
9.4.1 Effect of Grain Boundaries on the Strength of Metals 225
9.4.2 Effect of Cold Plastic Deformation on Increasing the Strength of Metals 227
9.4.3 Solid-Solution Strengthening of Metals 228
9.4.4 Recovery and Re-crystallization of Plastically Deformed Metals 229
9.5 FRACTURE OF METALS 234
9.5.1 Ductile Fracture 234
9.5.2 Brittle Fracture 235
9.5.3 Toughness and Impact Testing 235
9.5.4 Fatigue of Metals 237
9.6 CREEP AND CREEP TEST OF METALS 239
9.6.1 Creep of Metals 239
9.6.2 The Creep Test 240
CHAPTER 10 ELECTRICAL PROPERTIES OF MATERIALS AND SUPERCONDUCTIVITY10.1 ELECTRICAL CONDUCTION IN METALS 242
10.1.1 The Classical Model for Electrical Conduction in Metals 242
10.1.2 Energy-Band Model for Electrical Conduction 247
10.2 INTRINSIC SEMICONDUCTORS 250
10.2.1 The Mechanism of Electrical Conduction in Intrinsic Semiconductors 250
10.2.2 Electrical Charge Transport in the Crystal Lattice of Pure Silicon 251
10.2.3 Energy-Band Diagram for Intrinsic Elemental Semiconductors 252
10.2.4 Quantitative Relationships for Electrical Conduction in Elemental Intrinsic Semiconductors 252
10.2.5 Effect of Temperature on Intrinsic Semiconductors 254
10.3 EXTRINSIC SEMICONDUCTORS 255
10.3.1 n-Type(Negative-Type)Extrinsic Semiconductors 255
10.3.2 p-Type(Positive-Type)Extrinsic Semiconductors 256
10.3.3 Doping of Extrinsic Silicon Semiconductor Material 258
10.3.4 Effect of Doping on Carrier Concentrations in Extrinsic Semiconductors 258
10.4 SEMICONDUCTOR DEVICES 262
10.4.1 pn Junction 262
10.4.2 Some Application for pn Junction Diode 265
10.5 SUPERCONDUCTIVITY AND OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 267
10.5.1 Superconductivity 267
10.5.2 Ferroelectricity 271
10.5.3 Piezoelectricity 272
CHAPTER 11 MAGNETIC PROPERTIES OF MATERIALS AND MAGNETIC MATERIALS 272
11.1 MAGNETIC PROPERTIES OF MATERIALS 274
11.1.1 Basic Concepts 274
11.1.2 Types of Magnetism 277
11.1.3 Effect of Temperature on Ferromagnetism 280
11.1.4 Ferromagnetic Domains 281
11.1.5 The Magnetization and Demagnetization of a Ferromagnetic Metal 286
11.2 MAGNETIC MATERIALS 287
11.2.1 Soft Magnetic Materials 287
11.2.2 Hard Magnetic Materials 290
11.2.3 Rare-Earth Alloys 290
11.2.4 Iron-Chromium-Cobalt Magnetic Alloys 291
CHAPTER 12 OPTICAL PROPERTIES OF MATERIALS 291
12.1 BASIC CONCEPTS 293
12.1.1 Light and Electromagnetic Wave 293
12.1.2 Light Interactions with Solids 295
12.1.3 Atomic and Electronic Interactions 295
12.2 OPTICAL PROPERTIES OF METALS 297
12.3 OPTICAL PROPERTIES OF NONMETALS 298
12.3.1 Refraction of Light 298
12.3.2 Reflection of Light 299
12.3.3 Absorption of Light 300
12.3.4 Transmission of Light 303
12.3.5 Color 304
12.3.6 Opacity and Translucency in Insulations 305
12.4 LASER AND APPLICATIONS OF OPTICAL PHENOMENA 306
12.4.1 Luminescence 306
12.4.2 Photoconductivity 307
12.4.3 Lasers 308
CHAPTER 13 CORROSION 311
13.1 GENERAL 311
13.1.1 Corrosion Phenomenon 311
13.1.2 Corrosion of Metals and Nonmetallic Materials 312
13.1.3 Cost of Corrosion in Industry 313
13.1.4 Classification of Corrosion 313
13.2 CORROSION MECHANISM FOR DRY CORROSION(OXIDATION OF METALS) 314
13.3 WET CORROSION OR ELECTROCHEMICAL OXIDATION 316
13.3.1 Wet Corrosion Mechanism 316
13.3.2 Electrochemical Corrosion of Materials 317
13.3.3 Electrode Potentials 318
13.3.4 Galvanic Cells 320
13.3.5 Common Examples of Galvanic Corrosion Involving Dissimilar Materials 321
13.4 POURBAIX DIAGRAM 322
13.4.1 Pourbaix Diagram 322
13.4.2 Meaning of Dashed Line(ab,cd) in Figure 13.19 323
13.4.3 E/pH Diagram for Fe in Water 323
13.5 CORROSION CONTROL 324
CHAPTER 14 COMPOSITE MATERIALS 327
14.1 INTRODUCTION 327
14.1.1 Definition 327
14.1.2 Classification and Scheme Phase 327
14.1.3 Engineer Application 328
14.2 FIBERS FOR REINFORCED-PLASTIC COMPOSITE MATERIALS 328
14.2.1 Glass Fibers for Reinforcing Plastic Resins 329
14.2.2 Carbon Fibers for Reinforced Plastics 330
14.2.3 Aramid Fibers for Reinforcing Plastic Rosins 331
14.2.4 Comparison of Mechanical Properties 332
14.3 FIBER-REINFORCED-PLASTIC COMPOSITE MATERIALS 333
14.3.1 Matrix Materials for Fiber-Reinforced-Plastic Composite Materials 333
14.3.2 Fiber-Reinforced Plastic Composite Materials 334
14.3.3 Equations for Elastic Modulus of a Lamellar Continuous-Fiber-Plastic Matrix Composite 337
14.4 CONCRETE 340
14.4.1 Portland Cement 341
14.4.2 Mixing Water for Concrete 344
14.5 ASPHALT AND ASPHALT MIXES 348
14.6 WOOD 349
14.6.1 Softwoods and Hardwoods 349
14.6.2 Microstructure of Wood 351
14.6.3 Properties of Wood 354
14.6.4 Sandwich Structures 356
REFERENCES 358