《物理和化学中的随机过程 第3版 英文版》PDF下载

  • 购买积分:15 如何计算积分?
  • 作  者:(荷)范卡梅伦著
  • 出 版 社:北京/西安:世界图书出版公司
  • 出版年份:2010
  • ISBN:9787510005695
  • 页数:463 页
图书介绍:本书1981年初版,1992年第2版,1997年第2版修订出版,2007年第3版,2008年重印出版。这是第3版,较第2版的最大不同是,取消了原来第17章中第6节量子主方程的应用,取而代之的是量子波动的介绍;除此之外,本书做了不少修订。并且也增加了许多最近发展成果。

Ⅰ.STOCHASTIC VARIABLES 1

1.Definition 1

2.Averages 5

3.Multivariate distributions 10

4.Addition of stochastic variables 14

5.Transformation of variables 17

6.The Gaussian distribution 23

7.The central limit theorem 26

Ⅱ.RANDOM EVENTS 30

1.Definition 30

2.The Poisson distribution 33

3.Alternative description of random events 35

4.The inverse formula 40

5.The correlation functions 41

6.Waiting times 44

7.Factorial correlation functions 47

Ⅲ.STOCHASTIC PROCESSES 52

1.Definition 52

2.Stochastic processes in physics 55

3.Fourier transformation of stationary processes 58

4.The hierarchy of distribution functions 61

5.The vibrating string and random fields 64

6.Branching processes 69

Ⅳ.MARKOV PROCESSES 73

1.The Markov property 73

2.The Chapman-Kolmogorov equation 78

3.Stationary Markov processes 81

4.The extraction of a subensemble 86

5.Markov chains 89

6.The decay process 93

Ⅴ.THE MASTER EQUATION 96

1.Derivation 96

2.The class of W-matrices 100

3.The long-time limit 104

4.Closed,isolated,physical systems 108

5.The increase of entropy 111

6.Proof of detailed balance 114

7.Expansion in eigenfunctions 117

8.The macroscopic equation 122

9.The adjoint equation 127

10.Other equations related to the master equation 129

Ⅵ.ONE-STEP PROCESSES 134

1.Definition;the Poisson process 134

2.Random walk with continuous time 136

3.General properties of one-step processes 139

4.Examples of linear one-step processes 143

5.Natural boundaries 147

6.Solution of linear one-step processes with natural boundaries 149

7.Artificial boundaries 153

8.Artificial boundaries and normal modes 157

9.Nonlinear one-step processes 161

Ⅶ.CHEMICAL REACTIONS 166

1.Kinematics of chemical reactions 166

2.Dynamics of chemical reactions 171

3.The stationary solution 173

4.Open systems 176

5.Unimolecular reactions 178

6.Collective systems 182

7.Composite Markov processes 186

Ⅷ.THE FOKKER-PLANCK EQUATION1.Introduction 193

2.Deritvation of the Fokker-Planck equation 197

3.Brownian motion 200

4.The Rayleigh particle 204

5.Application to one-step processes 207

6.The multivariate Fokker-Planck equation 210

7.Kramers' equation 215

Ⅸ.THE LANGEVIN APPROACH 219

1.Langevin treatment of Brownian motion 219

2.Applications 221

3.Relation to Fokker-Planck equation 224

4.The Langevin approach 227

5.Discussion of the It?-Stratonovich dilemma 232

6.Non-Gaussian white noise 237

7.Colored noise 240

Ⅹ.THE EXPANSION OF THE MASTER EQUATION1.Introduction to the expansion 244

2.General formulation of the expansion method 248

3.The emergence of the macroscopic law 254

4.The linear noise approximation 258

5.Expansion of a multivariate master equation 263

6.Higher orders 267

Ⅺ.THE DIFFUSION TYPE 273

1.Master equations of diffusion type 273

2.Diffusion in an external field 276

3.Diffusion in an inhomogeneous medium 279

4.Multivariate diffusion equation 282

5.The limit of zero fluctuations 287

Ⅻ.FIRST-PASSAGE PROBLEMS 292

1.The absorbing boundary approach 292

2.The approach through the adjoint equation-Discrete case 298

3.The approach through the adjoint equation-Continuous case 303

4.The renewal approach 307

5.Boundaries of the Smoluchowski equation 312

6.First passage of non-Markov processes 319

7.Markov processes with large jumps 322

ⅩⅢ.UNSTABLE SYSTEMS 326

1.The bistable system 326

2.The escape time 333

3.Splitting probability 337

4.Diffusion in more dimensions 341

5.Critical fluctuations 344

6.Kramers' escape problem 347

7.Limit cycles and fluctuations 355

ⅩⅣ.FLUCTUATIONS IN CONTINUOUS SYSTEMS1.Introduction 363

2.Diffusion noise 365

3.The method of compounding moments 367

4.Fluctuations in phase space density 371

5.Fluctuations and the Boltzmann equation 374

ⅩⅤ.THE STATISTICS OF JUMP EVENTS1.Basic formulae and a simple example 383

2.Jump events in nonlinear systems 386

3.Effect of incident photon statistics 388

4.Effect of incident photon statistics-continued 392

ⅩⅥ.STOCHASTIC DIFFERENTIAL EQUATIONS1.Deftnitions 396

2.Heuristic treatment of multiplicative equations 399

3.The cumulant expansion introduced 405

4.The general cumulant expansion 407

5.Nonlinear stochastic differential equations 410

6.Long correlation times 416

ⅩⅦ.STOCHASTIC BEHAVIOR OF QUANTUM SYSTEMS1.Quantum probability 422

2.The damped harmonic oscillator 428

3.The elimination of the bath 436

4.The elimination of the bath-continued 440

5.The Schr?dinger-Langevin equation and the quantum master equation 444

6.A new approach to noise 449

7.Internal noise 451

SUBJECT INDEX 457